Bachelor of Arts (B.A.) Third Semester Examination
 MATHEMATICS
 (Advanced Calculus, Sequence and Series)
 Optional Paper-1

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to $\mathbf{4}$ have an alternative. Solve each question in full or it alternative in full.

UNIT-I

1. (A) If $f(x, y)$ and $g(x, y)$ are two functions then prove that limit of a product of these two functions equals the product of their limits.
(B) Prove that the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}$ is continuous everywhere by using $\in-\delta$ definition of continuity.

OR

(C) Expand $f(x, y)=x^{2}+x y+y^{2}$ in powers of $(x-2)$ and $(y-3)$.
(D) Verify Cauchy's mean value theorem for the function x^{2} and x^{4} in the interval $[a, b], a, b$ being positive.
2. (A) Find envelope of the straight line $x / a+y / b=1$ when $a b=c^{2}$ and $c a$ is constant.
(B) Show that minimum value of $u=x y+\left(\frac{a^{3}}{x}\right)+\left(a^{3} / y\right)$ is $3 a^{2}$.

OR

(C) Determine the maxima and minima of $x^{2}+y^{2}+z^{2}$ when $a x^{2}+b y^{2}+\mathrm{cz}^{2}=1$.
(D) Show that if the perimeter of a triangle is constant, its area is maximum when it is equilateral.

UNIT-III

3. (A) Prove that every convergent sequence is bounded. Give an example to show that converse is not true.
(B) Show that the sequence $\left\langle x_{n}\right\rangle$ where $x_{n}=1+1 / 3+1 / 3^{2}+\ldots+1 / 3^{n}$ is a convergent sequence and converges to $3 / 2$.

OR

(C) Show by applying Cauchy's convergence criterion that the sequence $<x_{n}>$ given by :

$$
\begin{equation*}
\mathrm{x}_{\mathrm{n}}=1+1 / 3+1 / 5+\ldots+\frac{1}{2 \mathrm{n}-1} \text { diverges. } \tag{6}
\end{equation*}
$$

(D) If $\left\langle x_{n}\right\rangle$ and $\left\langle y_{n}\right\rangle$ be two sequences such that $\operatorname{Lim}_{n \rightarrow \infty} x_{n}=x$ and $\operatorname{Lim}_{n \rightarrow \infty} y_{n}=y$ where x and y are finite numbers then prove that $\operatorname{Lim}_{n \rightarrow \infty}\left(x_{n} / y_{n}\right)=x / y$ provided $y \neq 0$.
4. (A) Test the convergence of the following series using comparison test, whose r^{h} term is given as :
(i) $u_{n}=\left[1 / n-\log \left(\frac{n+1}{n}\right)\right]$
(ii) $\mathrm{u}_{\mathrm{n}}=\frac{\mathrm{n}+1}{(\mathrm{n}+2)^{2}}$.
(B) Prove that the nature of an infinite series remains unaltered by the addition or removal of a finite number of terms.

OR

(C) Prove that the series $\sum(-1)^{n} \frac{x^{n}}{n}$ is :
(i) Convergent if $|\mathrm{x}|<1$
(ii) Divergent if $|\mathrm{x}|>1$.
(D) Prove that the series $\sum(-1)^{\mathrm{n}} \sin 1 / \mathrm{n}$ is conditionally convergene

Question-V

5. (a) Verify Rolle's theorem for $f(x)=x^{2}$ in $[-1,1]$.
(b) Show that the function :

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}, \mathrm{y}) & =\mathrm{x}^{2}+2 \mathrm{y} \text { when }(\mathrm{x}, \mathrm{y}) \neq(1,2) \\
& =0 \text { when }(\mathrm{x}, \mathrm{y})=(1,2)
\end{aligned}
$$

has a removable discontinuity at $(1,2) \quad 1 \frac{1}{2}$
(c) Find the envelope of the family of straight lines:

$$
y=m x+1 / m
$$

$\begin{array}{ll}\text { (d) Define Maxima and Minimaf function of two variables. } & 11 / 2\end{array}$
(e) Define Limit of a sequence.
(f) Prove that a monotonic decreasing sequence is convergent if and only if it is bounded. $1 \frac{112}{2}$
(g) Prove that an infintite series $u_{1}+u_{2}+\ldots+u_{n}+\ldots$ is convergent if $\operatorname{Lim}_{n \rightarrow \infty}\left(u_{n}\right)^{1 / n}<1 . \quad 1^{1 / 2}$
(h) Prove that an absolute convergent series is convergent.

