NIR/KW/18/5852

Bachelor of Arts (B.A.) Third Semester Examination

MATHEMATICS

(Advanced Calculus, Sequence and Series)

Optional Paper—1

Time : Three Hours]

[Maximum Marks : 60

Note :—(1) Solve all the **FIVE** questions.

- (2) All questions carry equal marks.
- (3) Question Nos. 1 to 4 have an alternative. Solve each question in full or it alternative in full.

UNIT—I

- (A) If f(x, y) and g(x, y) are two functions then prove that limit of a product of these two functions equals the product of their limits.
 - (B) Prove that the function f(x, y) = xy is continuous everywhere by using $\in -\delta$ definition of continuity.

OR

- (C) Expand $f(x, y) = x^2 + xy + y^2$ in powers of (x 2) and (y 3). 6
- (D) Verify Cauchy's mean value theorem for the function x² and x⁴ in the interval [a, b], a, b being positive.
 6

UNIT—II

2. (A) Find envelope of the straight line x/a + y/b = 1 when $ab = c^2$ and c a is constant. 6

(B) Show that minimum value of
$$u = xy + \left(\frac{a^3}{x}\right) + \left(\frac{a^3}{y}\right)$$
 is $3a^2$. 6

OR

- (C) Determine the maxima and minima of $x^2 + y^2 + z^2$ when $ax^2 + by^2 + cz^2 = 1$. 6
- (D) Show that if the perimeter of a triangle is constant, its area is maximum when it is equilateral.

UNIT-III

- (A) Prove that every convergent sequence is bounded. Give an example to show that converse is not true.
 - (B) Show that the sequence $\langle x_n \rangle$ where $x_n = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}$ is a convergent sequence and converges to 3/2.

OR

(C) Show by applying Cauchy's convergence criterion that the sequence $\langle x_n \rangle$ given by :

$$x_n = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}$$
 diverges. 6

(D) If $\langle x_n \rangle$ and $\langle y_n \rangle$ be two sequences such that $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$ where x and y are

finite numbers then prove that
$$\lim_{n \to \infty} \left(\frac{X_n}{y_n} \right) = \frac{X}{y}$$
 provided $y \neq 0$. 6

6

UNIT-IV

4. (A) Test the convergence of the following series using comparison test, whose nth term is given as :

(i)
$$u_{n} = \left[\frac{1}{n} - \log\left(\frac{n+1}{n}\right)\right]$$

(ii)
$$u_{n} = \frac{n+1}{(n+2)^{2}}.$$
 6

(B) Prove that the nature of an infinite series remains unaltered by the addition or removal of a finite number of terms.

OR

	(C)	Prove that the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ is :	
		(i) Convergent if $ \mathbf{x} < 1$	
		(ii) Divergent if $ \mathbf{x} > 1$.	6
	(D)	Prove that the series $\sum_{n=1}^{\infty} (-1)^n \sin 1/n$ is conditionally convergent.	6
		Question—V	
5.	(a)	Verify Rolle's theorem for $f(x) = x^2$ in $[-1, 1]$.	11⁄2
	(b)	Show that the function :	
		f (x, y) = $x^2 + 2y$ when (x, y) \neq (1, 2) = 0 when (x, y) = (1, 2)	
		has a removable discontinuity at (1, 2)	11⁄2
	(c)	Find the envelope of the family of straight lines :	
		y = mx + 1/m.	11⁄2
	(d)	Define Maxima and Minima of function of two variables.	11⁄2
	(e)	Define Limit of a sequence.	11⁄2
	(f)	Prove that a monotomic decreasing sequence is convergent if and only if it is bounded.	11⁄2
	(g)	Prove that an infinite series $u_1 + u_2 + + u_n +$ is convergent if $\lim_{n \to \infty} (u_n)^{1/n} < 1$.	11⁄2
	(h)	Prove that an absolute convergent series is convergent.	11⁄2