Bachelor of Arts (B.A.) Third Semester Examination

 STATISTICS

 STATISTICS
 (Statistical Methods)
 Optional Paper-1

Time : Three Hours]
[Maximum Marks : 50
N.B. :- ALL questions are compulsory and carry equal marks.

1. (A) Define (i) joint p.d.f. (ii) marginal p.d.f. (iii) conditional p.d.f. (iv) conditional mean and (v) conditional variance of a continuous bivariate probability distribution. The p.d.f. of a continuous bivariate distribution is :

$$
\mathrm{f}(\mathrm{X}, \mathrm{Y})=\left\{\begin{array}{rr}
\mathrm{X}+\mathrm{Y}, & 0<\mathrm{X}<1 \\
0<\mathrm{Y}<1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find :
(i) Marginal p.d.fs of X and Y .
(ii) Conditional p.d.f. of Y given $\mathrm{X}=\mathrm{x}$.
(iii) Conditional mean of Y given $\mathrm{X}=\frac{1}{2}$.
(iv) Conditional variance of Y given $\mathrm{X}=\frac{1}{2}$.

OR

(E) Define :
(i) Bivariate p.d.f. of random variables X and Y .
(ii) Conditional p.d.f. of X given $\mathrm{Y}=\mathrm{y}$.
(iii) Conditional mean of X given $\mathrm{Y}=\mathrm{y}$.
(iv) Conditional variance.
(v) Stochastic independence of rv's X and Y . If the random variables X and Y have joint p.d.f.

$$
\mathrm{f}(\mathrm{X}, \mathrm{Y})=\left\{\begin{array}{cl}
12 \mathrm{XY}(1-\mathrm{Y}), & 0<\mathrm{X}<1 \\
0, & 0<\mathrm{Y}<1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Check whether X and Y are Stochastically independent.
2. (A) State the p.d.f. of Bivariate normal distribution of r.v. (X, Y). Find its m.g.f. and hence find means of X and Y. Let X and Y have a bivariate normal distribution with means μ_{1} and μ_{2}, positive variances σ_{1}^{2} and σ_{2}^{2} and correlation coefficient. Then using m.g.f. show that X and Y are independent iff $\rho=0$.

OR

(E) State the p.m.f. of trinomial distribution. Find the marginal p.m.f. of X. A manufactured item is classified as 'good', a 'second' or 'defective' with probabilities $\frac{6}{10}, \frac{3}{10}$ and $\frac{1}{10}$ respectively. Fifteen such items are selected at random from the production line. Let X denote the number of good items. Y denote the number of seconds and $15-\mathrm{X}-\mathrm{Y}$ the number of defectives.
(a) Give the joint p.m.f. of X and Y .
(b) Find $\mathrm{P}(\mathrm{X}=10, \mathrm{Y}=4)$.
(c) Find $\mathrm{P}(\mathrm{X} \leq 1)$.
3. (A) Let $X_{1}, X_{2} \ldots \ldots X_{n}$ be a random sample of size n from exponential distribution. Find the probability distribution of $\sum_{i=1}^{n} X_{i}$.
(B) If the joint of random variables X_{1} and X_{2} is:

$$
f\left(X_{1}, X_{2}\right)= \begin{cases}e^{-\left(x_{1}+x_{2}\right),}, & x_{1}>0, x_{2}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Find :
(a) the joint p.d.f. of r.v.s $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=\frac{X_{1}}{X_{1}+X_{2}}$.
(b) the marginal p.d.f. of Y_{2}.

OR

(E) Suppose that random variables X and Y have joint density function given by :

$$
\mathrm{f}(\mathrm{X}, \mathrm{Y})= \begin{cases}\mathrm{C}(2 \mathrm{X}+\mathrm{Y}), & 2<\mathrm{X}<6,0<\mathrm{Y}<5 \\ 0 & \text { elsewhere }\end{cases}
$$

Find :
(i) C
(ii) Joint p.d.f. of $\mathrm{U}=2 \mathrm{X}$ and $\mathrm{V}=2 \mathrm{Y}$
(iii) Marginal p.d.f. of U and V
(iv) Are U and V independent?
4. (A) Define the chi-square statistic. State its p.d.f. Find mode of a chi-square distribution. State and prove additive property of chi-square distribution.
(B) Define Fisher's t. Derive its p.d.f.

OR

(E) Define F-statistic. Derive its p.d.f. Find μ_{r}^{\prime} and hence find mean and variance of F-distribution.
5. Solve any TEN of the following questions :
(A) Define Fisher's t.
(B) Show that student's t follows Fisher's t with ($n-1$) d.f.
(C) What is mode of t -distribution ?
(D) State conditional mean of X given $\mathrm{Y}=\mathrm{y}$ if (X, Y) follows bivariate normal distribution.
(E) State m.g.f. of tri-nomial distribution.
(F) State conditional variance of $\mathrm{Y} / \mathrm{X}=\mathrm{x}$ of bi-variate normal distribution.
(G) Define a random sample.
(H) If joint p.d.f. of two r.v.s. of (X, Y) is given by $f(X, Y)=h(X) . g(Y)$ where $h(X)$ and $g(Y)$ are non-negative functions of X alone and Y alone respectively, then show that r.v.s X and Y are Stochastically independent.
(I) Define m.g.f. of bivariate probability distribution.
(J) Define (r, s) ${ }^{\mathrm{th}}$ product moment about origin. How can it be obtained from the m.g.f. of bivariate probability distribution?
(K) Let a r.v. $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$ then derive the distribution of $\mathrm{Z}=\left(\frac{\mathrm{X}-\mu}{\sigma}\right)$.
(L) Define a statistic.

