Bachelor of Arts (B.A.) Fifth Semester Examination
 MATHEMATICS
 (Metric Space, Complex Integration and Algebra)
 Optional Paper-2

Time : Three Hours]
[Maximum Marks : 60
N.B. :-(1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. $\mathbf{1}$ to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) Prove that every infinite subset of a countable set is countable.
(B) Define a metric on a set X. Determine whether the function d defined by

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\left|\mathrm{x}^{2}-\mathrm{y}^{2}\right| \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}^{1}
$$

is a metric or not.

OR

(C) Prove that the set G is open if and only if G^{C} (Complement of G) is closed.
(D) Let E be a non-empty set of real numbers which is bounded above. Let $\mathrm{y}=\sup \mathrm{E}$. Then prove that $\mathrm{y} \in \overline{\mathrm{E}}$.

UNIT-II

2. (A) Prove that closed subsets of compact sets are compact. Hence or otherwise prove that $\mathrm{A} \cap \mathrm{B}$ is compact if A is closed and B is compact.
(B) Prove that if E is a connected subset of the real line R^{1} and $x, y \in E$ such that $x<z<y$, then $z \in E$.

OR

(C) Let Y be a subspace of a complete metric space X . Prove that Y is complete if and only if Y is closed.
(D) If $\left\{I_{n}\right\}$ is a sequence of intervals in R^{1}, such that $\operatorname{In} \supset I_{n+1}(n=1,2,3, \ldots)$, then prove that $\bigcap_{n=1}^{\infty} I_{n}$ is not empty.

UNIT-III

3. (A) If R is a ring and $\mathrm{a}^{2}=\mathrm{a}$ for all $\mathrm{a} \in \mathrm{R}$ then prove that R is a commutative ring.
(B) Prove that a finite integral domain is a field.

OR
(C) Define kernel of a ring homomorphism. If ϕ is a homomorphism of a ring R into a ring R^{\prime} with Kernel $\mathrm{I}(\phi)$, then prove that $\mathrm{I}(\phi)$ if an ideal of R .
(D) Let R and R^{\prime} be the rings and ϕ be a homomorphism of R onto R^{\prime} with Kernel U . Prove that R^{\prime} is isomorphic to R / U.
4. (A) Evaluate $\oint_{C} \frac{z-1}{z^{2}(z-2)} d z$ using Cauchy's integral formula, where C is the circle $|z-i|=2$.
(B) Verify Cauchy's theorem for $\int_{\mathrm{C}} \mathrm{z}^{3} \mathrm{dz}$ over the boundary of the triangle with vertices $(1,2)$, $(1,4),(3,2)$.

OR

(C) Evaluate $\int_{C} \frac{z^{3}}{(z-1)^{4}(z-2)(z-3)} d z$ by the method of calculus of residues, where C is a circle $|z|=4$.
(D) Evaluate $\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+3 \cos \theta}$.

Question-V

5. (A) Prove that the set of even natural numbers is countable.
(B) Define the following :
(i) Derived set
(ii) Closure of a set.
(C) Determine whether the set $\mathrm{A}=(0,1)$ is compact in R .11⁄2
(D) Define K-cell and explain 1-cell.
(E) If ϕ is a homomorphism of a ring R into a ring R^{\prime}, then prove that for $a \in R$, the additive inverse of $\phi(a)$ is $\phi(-a)$.
(F) Find the Kernel of a homomorphism $\mathrm{J}(\sqrt{2}) \rightarrow \mathrm{J}(\sqrt{2})$ defined by $\phi(\mathrm{a}+\mathrm{b} \sqrt{2})=\mathrm{a}-\mathrm{b} \sqrt{2}$ where $J(\sqrt{2})$ is a ring of real numbers of the form $a+b \sqrt{2}$ (a and B are integers). $11 / 2$
(G) Examine whether Cauchy's integral theorem is applicable to evaluate $\int_{\mathrm{C}} \frac{\mathrm{z}^{2}+2}{\mathrm{z}+2} \mathrm{dz}$ where C is the circle $|z|=3$.
(H) Find the residue $\frac{1}{\left(z^{2}+1\right)^{3}}$ at $\mathrm{z}=\mathrm{i}$.
