Bachelor of Computer Application (B.C.A.) Semester-I Examination DISCRETE MATHEMATICS-I

Paper-IV

Time : Three Hours]
[Maximum Marks :
50
N.B. :- ALL questions are compulsory and carry equal marks.

EITHER

1. (A) What is the truth table and statement formulas? Write the steps to construct the truth table.
(B) Show that :

$$
\begin{equation*}
\mathrm{T}(\mathrm{P} \wedge \mathrm{Q}) \rightarrow(\mathrm{T} \mathrm{P}(\mathrm{~T} \mathrm{P} \vee \mathrm{Q})) \Leftrightarrow(\mathrm{T} \mathrm{P} \vee \mathrm{Q}) \tag{5}
\end{equation*}
$$

OR

(C) Show that:

$$
((\mathrm{P} \vee \mathrm{Q}) \wedge \mathrm{T}(\mathrm{~T} \mathrm{P} \wedge(\mathrm{~T} \mathrm{Q} \vee \mathrm{~T} P))) \vee(\mathrm{T} P \wedge \mathrm{~T} Q) \vee(\mathrm{T} P \wedge T R)
$$ is a tautology.

(D) Prove that $\{\wedge, T\}$ and $\{\vee, T\}$ are functionally complete.

EITHER

2. (A) Obtain principal conjunctive normal form of formula :

$$
\begin{equation*}
(\mathrm{T} P \rightarrow \mathrm{R}) \wedge(\mathrm{Q} \rightleftarrows \mathrm{P}) \tag{5}
\end{equation*}
$$

(B) Define DNF and CNF. Also describe the procedure to obtain DNF and CNF.

OR
(C) Obtain conjuctive normal form of :

$$
\begin{equation*}
\mathrm{T}(\mathrm{P} \vee \mathrm{Q}) \rightleftarrows(\mathrm{P} \wedge \mathrm{Q}) \tag{5}
\end{equation*}
$$

(D) Define PDNF. Discuss the truth table and replacement method to obtain PDNF.

EITHER

3. (A) Determine whether the conclusion C is valid for the premises $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3}. $\mathrm{H}_{1}: \mathrm{P} \vee \mathrm{Q}, \mathrm{H}_{2}: \mathrm{P} \rightarrow \mathrm{R}, \mathrm{H}_{3}: \mathrm{Q} \rightarrow \mathrm{R}$ and $\mathrm{C}: \mathrm{R}$.5
(B) Show that $T(P \wedge Q)$ follows from $T P \wedge T Q$. 5

OR
(C) What is theory of inference for statement calculus ? What are the rules of inference ?
(D) Demonstrate that R is valid inference from the premises $\mathrm{P} \rightarrow \mathrm{Q}, \mathrm{Q} \rightarrow \mathrm{R}$ and P . 5

EITHER

4. (A) Show that:
$(\mathrm{x})(\mathrm{H}(\mathrm{x}) \rightarrow \mathrm{M}(\mathrm{x})) \wedge \mathrm{H}(\mathrm{s}) \Rightarrow \mathrm{M}(\mathrm{s})$.
(B) Explain free and bound variables with respect to predicate calculus. Give an example.

OR

(C) Symbolise the expression "ALL the world lovers a lover". 5
(D) Define variable and quantifier. Also explain various types of quantifier.
5. Attempt ALL :
(A) Negate and simplify the following statement:
$(P \vee Q) \wedge T(T P \wedge Q) . \quad 21 / 2$
(B) Obtain PDNF of the following using truth table method:
$(\mathrm{P} \vee \mathrm{Q}) . \quad 21 / 2$
(C) Show that:
$T \mathrm{Q}, \mathrm{P} \rightarrow \mathrm{Q} \Rightarrow \mathrm{TP} \quad \quad 21 / 2$
(D) What is universe of disclosure ? Give one example. $2 \frac{1 ⁄ 2}{2}$

