TKN/KS/16/5966

Bachelor of Computer Application (B.C.A.) Part—I (Semester—II) (C.B.S.) Examination DISCRETE MATHEMATICS—II

Paper—IV

Time—Three Hours]

[Maximum Marks—50

Note:—(1) All questions are compulsory and carry equal marks.

(2) Draw neat, labelled diagrams wherever necessary.

EITHER

- 1. (a) Prove that $A (A B) \subseteq B$ where A and B are sets. 5
 - (b) Prove that:

Let R be an equivalence relation on A and let P be the collection of all distinct relative sets R(a) for a in A. Then P is a partition of A and R is an equivalence relation determined by P. 5

OR

(c) Prove that:

$$A - B = A \cap \overline{B}$$

for the set A and B.

5

MXP-O-4103

1

(Contd.)

WWW.ithunlouine.com

(d) Let $A = \{a, b, c, d\}$ and Let R be the relation on A that has the matrix

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Construct the diagraph of R and list indegrees and out-degree of all vertices. 5

EITHER

(a) Let $f: A \to B$ and $g: B \to C$ be the invertible function then prove that

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

(b) Prove by Mathematical Induction,

b) Prove by Mathematical Induction,
$$a + ar + ar^{2} + + ar^{n-1} = \frac{\underbrace{a(1-r^{n})}}{1}$$
for $r \neq 1$.

$$5$$

OR

c) Let $f : A \rightarrow B$ and $g : B \rightarrow A$ be functions such

OR

(c) Let $f : A \to B$ and $g : B \to A$ be functions such that $g \circ f = I_A$ and $f \circ g = I_B$, Then prove that f is

- (d) Prove that a tree with n vertices has n 1 edges. 5
- (a) Define Symmetric difference of two sets, 5. complement of Set B with respect to A and find $A \oplus B$, $B \oplus C$, if

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\},$$

$$A = \{1, 2, 4, 6, 8\}, B = \{2, 4, 5, 9\},$$

$$C = \{x : x \text{ is positive integer and } x^2 \le 16\}.$$

$$(b) \text{ Let } A = \{1, 2, 3, 4, 5, 6\}$$

 $2\frac{1}{2}$

(b) Let $A = \{1, 2, 3, 4, 5, 6\}$

Compute:

$$(4, 1, 3, 5) \circ (5, 6, 3)$$
 $2\frac{1}{2}$

- (c) Define:
 - Distributive Lattice
 - (ii) Complemented Lattice. $2\frac{1}{2}$
- (d) Define Graph. Explain the representation of graph in memory. $2\frac{1}{2}$

MXP-O-4103 2 (Contd.)

5 MXP-O-4103 1450 one-to-one correspondence from A to B and g is one-to-one from B to A and each is inverse of other.

- (d) Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, determine whether the permutation is even or odd,
 - (i) (6, 4, 2, 1, 5)
 - (ii) (4, 8) o (3, 5, 2, 1) o (2, 4, 7, 1) 5

EITHER

- 3. (a) Let $f: S \to T$ be a homomorphism of the semigroup (S, *) onto the semigroup (T, *). Let R be the relation on S defined by aRb if and only if f(a) = f(b) for a and b in S. Then prove that R is a congruence relation.
 - (b) Let A = {1, 2, 3, 4, 12}. Consider a partial order divisibility on A. Draw the Hasse diagram of the poset (A, ≤).

OR

MXP-O—4103 3 (Contd.)

(c) Let G be the set of all non zero real numbers and let

$$a * b = 2$$
 $\forall a, b \in G$

Show that (G, *) is an abelian group. 5

(d) Let L be a bounded distributive lattice. Prove that if complement of $a \in L$ exists, then it is unique.

EITHER

4. (a) Define Euler path and Euler circuit. Prove that if a graph G has more than two vertices of odd degree, then there can be no euler path in G.

5

5

- (b) Define:
 - (i) Tree
 - (ii) Height of tree
 - (iii) Complete binary tree.

OR

(c) Let number of edges of graph G be m, then prove that G has a Hamiltonian circuit if

 $m \ge \frac{1}{2} (n^2 - 3n + 6)$ where n is the number of vertices.

MXP-O—4103 4 (Contd.)