Bachelor of Computer Application (B.C.A.) Part-I
(Semester-II) (C.B.S.) Examination DISCRETE MATHEMATICS—II

Paper-IV
Time-Three Hours]
[Maximum Marks-50
Note :-(1)All questions are compulsory and carry equal marks.
(2) Draw neat, labelled diagrams wherever necessary.

EITHER

1. (a) Prove that $\mathrm{A}-(\mathrm{A}-\mathrm{B}) \subseteq \mathrm{B}$ where A and B are sets.
(b) Prove that :

Let R be an equivalence relation on A and let P be the collection of all distinct relative sets $\mathrm{R}(\mathrm{a})$ for a in A . Then P is a partition of A and R is an equivalence relation determined by P.

OR
(c) Prove that :

$$
\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \overline{\mathrm{~B}}
$$

for the set A and B .
(d) Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and Let R be the relation on A that has the matrix

$$
\mathrm{M}_{\mathrm{R}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Construct the diagraph of R and list indegrees and out-degree of all vertices.

EITHER

2. (a) Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be the invertible function then prove that

$$
\begin{equation*}
(\mathrm{g} \circ \mathrm{f})^{-1}=\mathrm{f}^{-1} \circ \mathrm{~g}^{-1} \tag{5}
\end{equation*}
$$

(b) Prove by Mathematical Induction,
$a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{-}$
for $r \neq 1$.
OR
(c) Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}$ be functions such that g of $=I_{A}$ and $f_{o} g=I_{B}$, Then prove that f is
(d) Prove that a tree with n vertices has $n-1$ edges.
5. (a) Define Symmetric difference of two sets, complement of Set B with respect to A and find $\mathrm{A} \oplus \mathrm{B}, \mathrm{B} \oplus \mathrm{C}$, if $U=\{1,2,3,4,5,6,7,8,9\}$, $A=11,2,4,6,8\}, B=\{2,4,5,9\}$, $C=\left\{x: x\right.$ is positive integer and $\left.X^{2} \leq 16\right\}$.
(b) Let $\mathrm{A}=\{1,2,3,4,5,6\}$

Compute :

$$
(4,1,3,5) \circ(5,6,3)
$$

(c) Define :
(i) Distributive Lattice
(ii) Complemented Lattice.
(d) Define Graph. Explain the representation of graph in memory.$21 / 2$
one-to-one correspondence from A to B and g is one-to-one from B to A and each is inverse of other.
(d) Let $\mathrm{A}=\{1,2,3,4,5,6,7,8\}$, determine whether the permutation is even or odd,
(i) $(6,4,2,1,5)$
(ii) $(4,8) \circ(3,5,2,1) \circ(2,4,7,1)$

EITHER

3. (a) Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ be a homomorphism of the semigroup $(\mathrm{S}, *)$ onto the semigroup ($\mathrm{T}, *$). Let R be the relation on S defined by aRb if and only if $f(a)=f(b)$ for a and b in S. Then prove that R is a congruence relation.
(b) Let $\mathrm{A}=\{1,2,3,4,12\}$. Consider a pârtial order divisibility on A. Draw the Hasse diagram of the poset (A, \leq).

OR

(c) Let G be the set of all non zero real numbers and let

$$
\mathrm{a} * \mathrm{~b}=2 \quad \forall \mathrm{a}, \mathrm{~b} \in \mathrm{G}
$$

Show that $(\mathrm{G}, *)$ is an abelian group.
(d) Let L be bounded distributive lattice. Prove that if complement of $a \in L$ exists, then it is unique.

EITHER

4. (a) Define Euler path and Euler circuit. Prove that if a graph G has more than two vertices of odd degree, then there can be no euler path in G.
(b) Define :
(i) Tree
(ii) Height of tree
(iii) Complete binary tree.

OR
(c) Let number of edges of graph G be m, then prove that G has a Hamiltonian circuit if
$\mathrm{m} \geq \frac{1}{2}\left(\mathrm{n}^{2}-3 \mathrm{n}+6\right)$ where n is the number of vertices.

