DATA STRUCTURES

Paper-III

Time : Three Hours]
[Maximum Marks : 50
N.B. :- (1) All questions are compulsory and carry equal marks.
(2) Draw neat and labelled diagram wherever necessary.

EITHER

1. (a) What is a single linked list ? Explain how it is represented in memory.
(b) Write an algorithm to traverse a circular linked list.

OR
(c) Write an algorithm to delete a node from the front of a linked list.
(d) How polynomial expression can be represented using linked list? Explain.

EITHER

2. (a) Translate the following infix expression in prefix and postfix notation :
(i) $\mathrm{a}+(\mathrm{b}-\mathrm{c}) * \mathrm{~d} /(\mathrm{e} * \mathrm{f})$
(ii) $(\mathrm{a}+\mathrm{b} * \mathrm{c}) /((\mathrm{a}+\mathrm{b}) * \mathrm{c})$

5
(b) Explain Quick sort using example.

OR

(c) Create a stack for performing the following operations :
(i) Push A
(ii) Push B
(iii) Pop
(iv) Push C
(v) Pop.
(d) What is recursion ? How Tower of Hanoi problem can be solved using recursion?

EITHER

3. (a) What is a queue ? What are the two ways in which a queue can be represented ?
(b) Sort the following data using selection sort :
$6,1,4,3,5,2,7$

OR

(c) Write an algorithm to insert an element in a circular queue.
(d) What is collision ? Explain collision resolution techniques.

EITHER

4. (a) Write preorder, inorder and postorder traversal of the following binary tree.

(b) Explain BFS method of graph traversal.

OR
(c) What is binary search tree ? Also give its sequential representation.
(d) Represent the following graph in adjacency matrix.

5. (a) Differentiate between single and double linked list. $2 \frac{1}{2}$
(b) Write an algorithm to insert an element into stack. 2½
(c) What is hashing ? Explain any one method of hashing with example. 21⁄2
(d) What do you mean by heap tree ? Explain with example. 2½

