NRT/KS/19/2228

Bachelor of Computer Application (BCA) Semester—III Examination OPERATIONS RESEARCH—I

Paper—IV

Time: Three Hours] [Maximum Marks: 50

Note:— (1) All questions are compulsory and carry equal marks.

- (2) Draw neat and labelled diagrams wherever necessary.
- (3) Assume suitable data wherever necessary.

EITHER

- 1. (a) Define OR. Explain its scope and limitations.
 - 5
 - (b) Formulate the model to maximize the profit.

Machine	Machine time required for		Max time available per
type	products	(minutes)	week (minutes)
	P1	P2	
Lathe	4	9	2000
Milling	12	5	5000
Grinding	6	10	900
Profit/Unit	Rs. 40	Rs. 60	

OR

- (c) Explain phases of OR.
- (d) Find the status of the following LPP graphically:—
- Max $Z = 6x_1 + x_2$

subject to

$$2x_1 + x_2 \ge 3$$

 $-x_1 + x_2 \ge 0$
 $x > 0$ $x > 0$

 $x_1 \ge 0, x_2 \ge 0.$ 5

EITHER

- 2. (a) Explain Simplex Algorithm.
 - Show that there is an unbounded solution to LPP.

Maximize $Z = 4x_1 + x_2 + 3x_3 + 5x_4$

subject to the constraints

$$-4x_1 + 6x_2 + 5x_3 + 4x_4 \le 20$$

$$3x_1 - 2x_2 + 4x_3 + x_4 \le 10$$

$$8x_1 - 3x_2 + 3x_3 + 2x_4 \le 20$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

5

OR

- (c) Write the steps to solve LPP using two-phase method.
- (d) Solve the given LPP using Simplex method:

Maximize $Z = 3x_1 + 2x_2$

subject to the constraints

$$2x_1 + x_2 \le 6$$

$$3x_1 + 4x_2 \le 12$$

$$x_1, x_2 \ge 0.$$

5

5

5

5

5

EITHER

3. (a) Explain North-West corner method for Transportation problem.

- (b) Solve the transportation problem using Vogel's approximation method:

• 	D1	D2	D3	D4	Supply
P1	2	3	11	7	6
P2	1	0	6	1	1
P3	5	8	15	9	10
Demand	7	5	3	2	

5

5

OR

(c) Explain Vogel's approximation method for transportation problem.

5

(d) Solve the transportation problem using least cost method:

	D1	D2	D3	D4	Supply
S1	11	13	17	14	250
S2	16	18	14	10	300
S3	21	24	13	10	400
Demand	200	225	275	250	

5

EITHER

4. (a) Explain Hungarian Method, to solve an assignment problem.

5

(b) Find the optimal solution to the given assignment problem:

	C1	C2	C3	C4
R1	86	11	22	42
R2	76	91	12	32
R3	50	66	82	31
R4	24	40	50	11

5

OR

(c) Explain Branch and Bound method for transportation problem.

5

(d) Find the optimal solution to assignment problem using Hungarian method:

	M1	M2	M3	M4
J1	5	7	11	6
J2	8	5	9	6
J3	4	7	10	7
J4	10	4	8	3

5

5. (a) Give the classification of problems in OR.

 $2\frac{1}{2}$

(b) Define slack variable, surplus variable and artificial variable.

 $2\frac{1}{2}$

(c) What do you mean by unbalanced transportation problem? How will you balance it?

2

21/2

(d) Give the mathematical formulation of an assignment problem.

 $2\frac{1}{2}$