NJR/KS/18/3228

Bachelor of Computer Application (B.C.A.) Semester-III (C.B.S.) Examination OPERATIONS RESEARCH-I
 Paper-IV

Time: Three Hours]
[Maximum Marks : 50
N.B. :- (1) All questions are compulsory and carry equal marks.
(2) Draw neat and labelled diagrams wherever necessary.

EITHER

1. (A) Explain significant features of operation research.
(B) Two different types of foods ' A ' and ' B ' are being considered to form a weekly diet. The minimum weekly requirements for fats carbohydrates and protein are 18,24 and 16 units respectively. One kg. of food 'A' has 4, 16 and 8 units respectively of these ingredients and one kg. of Food 'B' has 12,4 and 6 units respectively. The price of food 'A' is Rs. 6 per kg and that of food 'B' is Rs. 5 per kg. How many kg. of each type of food should be buy per week to minimize the cost and meet these requirements. Formulate this as L.P.P.

OR

(C) Explain the phases of operation research.
(D) Solve the following L.P.P. by graphical method:

$$
\text { Maximize } \mathrm{Z}=4 \mathrm{x}_{1}+3 \mathrm{x}_{2}
$$

subject to the constraints

$$
\begin{align*}
& 2 x_{1}+x_{2} \leq 1000 ; x_{1}+x_{2} \leq 800 \\
& x_{1} \leq 400 ; x_{2} \leq 700 \text { and } x_{1}, x_{2} \geq 0 \tag{5}
\end{align*}
$$

EITHER

2. (A) Solve the following L.P.P. using Simplex method:

Maximize $Z=3 x_{1}+2 x_{2}$
subject to the constraints :

$$
\begin{align*}
\mathrm{x}_{1}+\mathrm{x}_{2} & \leq 3 \\
\mathrm{x}_{1} & \leq 2 \\
-2 \mathrm{x}_{1}+\mathrm{x}_{2} & \leq 1 \tag{5}
\end{align*}
$$

and $x_{1}, x_{2} \geq 0$.
(B) Give the steps for formulating a dual problem of a primal problem.

OR
(C) Use penalty method (Big-M) to :

Maximize $Z=2 x_{1}+3 x_{2}$
subject to the constraints :

$$
\begin{array}{r}
\mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 4 \\
\mathrm{x}_{1}+\mathrm{x}_{2}=3 \tag{5}
\end{array}
$$

and $x_{1}, x_{2}, \geq 0$.
(D) Obtain the dual of L.P.P. :

Minimize $Z=4 x_{1}+6 x_{2}+18 x_{3}$
subject to the constraints :

$$
\begin{aligned}
& x_{1}+3 x_{2} \geq 3 \\
& x_{2}+2 x_{3} \geq 5
\end{aligned}
$$

and $\mathrm{x}_{\mathrm{j}} \geq 0 \quad(\mathrm{j}=1,2,3)$.

EITHER

3. (A) Explain mathematical model for transportation problem.
(B) Solve the following transportation problem using Vogel's approximation method:

Destination

Source	1	2	3	Availability
1	20	22	40	100
2	24	35	17	150
3	32	30	10	125
Requirements	75	125	175	

OR
(C) Write down an algorithm for least-cost method.
(D) What is unbalanced transportation problem?

Solve the following transportation problem :

EITHER

4. (A) Define assignment problem and give the mathematical formulation of the assignment problem.
(B) Solve the following assignment problem :

Workers

		W	X	Y	Z
	A	8	7	9	10
Jobs	B	7	9	9	8
	C	10	8	7	11
	D	10	6	8	7

OR

(C) Explain Branch and Bound technique to solve assignment problem.
(D) Solve the following assignment problem to minimize the cost of assignment :

$$
\text { Cost Matrix : }\left[\begin{array}{ccc}
8 & 7 & 6 \\
5 & 7 & 8 \\
6 & 8 & 7
\end{array}\right]
$$

5. Attempt all :
(A) Give the classification of models in operations research.
(B) Write the following L.P.P. in standard form :

Maximize $Z=4 x_{1}+5 x_{2}$
subject to the constraints ;

$$
\begin{aligned}
& 6 x_{1}+5 x_{2} \leq 250 ; 6 x_{1}+5 x_{2} \geq 150 ; \\
& 4 x_{1}+6 x_{2} \leq 200 ; 9 x_{1}+5 x_{2} \geq 130 ;
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$. http://www.rtmnuonline.com
(C) Explain North-West corner rule to find initial basic feasible solution of T.P. $2 \frac{1}{2}$
(D) Draw the associated network for the following assignment table :
$\left.\begin{array}{l} \\ \mathbf{W}_{1} \\ \mathbf{W}_{2} \\ \mathbf{W}_{3}\end{array} \begin{array}{lll}\mathbf{J}_{\mathbf{1}} & \mathbf{J}_{2} & \mathbf{J}_{3} \\ \hline 12 & 22 & 30 \\ 20 & 9 & 15 \\ 17 & 25 & 10\end{array}\right]$

