rtmnuonline.com

NIR/KW/18/2234

Bachelor of Computer Application (B.C.A.) Semester—IV Examination OPERATIONS RESEARCH—II

Paper—IV

Time: Three Hours] [Maximum Marks: 50

Note :—(1) **All** questions are compulsory and carry equal marks.

(2) Draw neat and labelled diagrams wherever necessary.

EITHER

1. (A) For the game with pay off matrix determine optimum strategy and value of the game:

Player B $\begin{bmatrix}
1 & 2 \\
5 & 4 \\
-7 & 9 \\
-4 & -3 \\
2 & 1
\end{bmatrix}$

5

(B) Explain dominance rules with example.

5

OR

(C) Explain Savage Criterion.

5

- (D) A Manager has a choice between:
 - (i) A risky contract promising Rs. 7 lakhs with probability 0.6 and Rs. 4 lakhs with probability 0.4 and
 - (ii) A diversified portfolio consisting of two contracts with independent outcomes each promising Rs. 3.5 lakhs with probability 0.6 and Rs. 2 lakhs with probability 0.4

Construct decision tree for using EMV criteria. What is the decision using EMV criteria? 5

1

EITHER

2. (A) Write rules for Network Construction.

5

(B) Draw a network diagram for :

Project Activity Preceding Activity

A	_
В	_
C	_
D	_
E	A, B
F	E
G	F
Н	D
I	G, H
J	C, I

5

OR

(C) Explain the basic difference between PERT and CPM.

5

(D) Draw the PERT network and find out expected project completion time:

Activity	Immediate	Estimated duration		
	Predecessor	Optimistic	Most Likely	Pessimistic
A	_	1	1	7
В	_	1	4	7
С	_	2	2	8
D	A	1	1	1
Е	В	2	5	14
F	C	2	5	8
G	D, E	3	6	15
Н	F, G	1	2	3

5

EITHER

3. (A) What are the various costs associated with inventory? Explain. 5

(B) Explain EOQ Model with constant rate of demand.

5

OR

- (C) A contractor has to supply 20,000 units per day. He can produce 30,000 units per day. The cost of holding a stock per unit is Rs. 3 per year and set up cost per run is Rs. 50. How frequently

	of holding a stock per uni	t is Rs. 3 per year and	set up cost per run 1898s. 50. How free		
	and of what size, the production runs be made?				
(D) Find the optimal order qu	antity for a product for	or which price breaks are as follows:		
	Quantity	Unit Cost (Rs.)	X TOTAL		
	$0 \le Q_1 < 500$	10.00	A.Fe		
	$500 \le Q_2 < 750$	9.25	AA.		
	$750 \leq Q_3$	8.75	7		
	The monthly demand for t	he product is 200 units	the cost of storage is 2% of the unit co		

The monthly demand for the product is 200 units, the cost of storage is 2% of the unit cost and the cost of ordering is Rs. 350. 5

EITHER

(A) What are the elements of Queuing System? 4.

- (B) In a railway marshalling yard, goods trains arrive at a rate of 30 trains per day. Assuming the inter-arrival time follows an exponential distribution and the service time distribution is also exponential with an average 36 ranutes. Calculate the following:

 - The mean queue size

 The probability that the queue size exceeds 10
 - (iii) Expected waiting time in the system.

5

OR

(C) What do you mean by queuing control?

5

- (D) A supermarket has two girls servicing at the counters. The customers arrive in a Poisson fashion at the rate of 12 per hour. The service time for each customer is exponential with mean 6 minutes. Find:
 - (i) The probability that an arriving customer has to wait for service.
 - (ii) The average number of customers in the system and
 - (iii) The average time spent by a customer in the super-market.

5

Attempt **ALL**:

(A) Write rules for determining saddle point.

 $2\frac{1}{2}$

(B) Give the iterative procedure of determining the critical path.

 $2\frac{1}{2}$

(C) What is buffer stock? How will you calculate buffer stock?

 $2\frac{1}{2}$

(D) Explain Kendal's notation for representing queuing models.

 $2\frac{1}{2}$