5

5

5

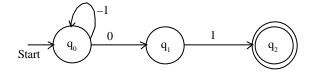
5

Bachelor of Computer Application (B.C.A.) Semester—IV (C.B.S.) Examination THEORY OF COMPUTATION

Paper-III

Time: Three Hours] [Maximum Marks: 50

N.B.:— (1) **ALL** questions are compulsory and carry equal marks.


(2) Draw neat and labelled diagrams whenever necessary.

EITHER

- What is Finite Automata? Construct a NFA accepting all strings in {a, b}+ with either two 1. consecutive a's or two consecutive b's. 5
 - (b) Explain the construction of NFA with E-transition from any given regular expression. 5

OR

(c) Explain the steps in conversion of NFA to DFA. Convert the following NFA to DFA. 5

(d) Explain Finite Automata with output.

EITHER

- 2. (a) Explain the closure properties of regular set with example.
 - (b) Explain Derivation Tree in detail.

OR

(c) Find whether the languages:

 $\{ww^R, w \text{ is in } (1+0)^*\}$ is regular or not.

(d) Explain Decision Algorithm for Regular sets. 5

EITHER

3.	(a)	Explain Chomsky Normal form with suitable example.	5
	(b)	Explain the process of eliminating useless symbols from CFG.	5
	OR		
	(c)	Explain Greibach Normal form with suitable example.	5
	(d)	Explain closure properties of context free language.	5
	EITHER		
4.	(a)	Discuss about PDA acceptance :	
		(i) From empty stack to final state.	
		(ii) From final state to empty stack.	5
	(b)	Define a PDA. Give an example for a Language accepted PDA by empty stack.	5
	OR		
	(c)	Construct PDA for language:	
		$L = \{ww^R/w \text{ in } (a+b)^*\}.$	5
	(d)	If L is context free language then prove that there exists PDA M such that $L = N$ (M).	5
5.	Attempt ALL:		
	(a)	Explain two way finite automata.	21/2
	(b)	Define parse tree.	21/2
	(c)	Explain pumping lemma for context free language.	21/2
	(d)	Give formal definition of a PDA.	2½