B.E. (Aeronautical Engineering) Fifth Semester (C.B.S.)

Aerodynamics - II

P. Pages : 2 Time : Three Hours

NIR/KW/18/3456

Max. Marks : 80

1.	Not	 es: 1. All questions carry marks as indicated. 2. Solve Question 1 OR Questions No. 2. 3. Solve Question 3 OR Questions No. 4. 4. Solve Question 5 OR Questions No. 6. 5. Solve Question 7 OR Questions No. 8. 6. Solve Question 9 OR Questions No. 10. 7. Solve Question 11 OR Questions No. 12. 8. Assume suitable data whenever necessary. 9. Illustrate your answers whenever necessary with the help of neat sketches. 10. Use of non programmable calculator is permitted. 	6
	b)	Explain in brief with well labelled diagram the formation of wing tip vortex.	7
		OR	
2.		Explain in brief with well labelled diagram momentum theory of wing for lift.	13
3.	a)	For a straight vortex filament (from $+\infty$ to $-\infty$) calculate the induced velocity.	6
	b)	Consider a finite wing with an aspect ratio of 8 and a toper ratio of 0.8. The airfoil section is thin and symmetric. Calculate the lift and induced drag coefficient for the wing when it is at an angle of attack of 5° assume $\delta = \overline{C} \ \delta = 0.055$ and $a_0 = 2\pi$.	7
		OR	
4.	a)	For a straight vortex filament (from 0 to $+\infty$) calculate the induced velocity.	6
	b)	Derive the fundamental equation of Prandtl lifting line theory.	7
5.	a)	Write a note on a winglet and strakes.	6
	b)	Explain in brief drag characteristics of a complete aircraft with neat sketches.	7
		OR	
6.	a)	Discuss flow past over slender bodies.	6
	b)	Explain in brief with well labelled diagram wing tip devices.	7
7.	a)	Calculate the lift and wave drag co-efficient for an infinitely thin flat plate in a mach 2.6 freestream at angle of attack of $\alpha = 15^{\circ}$.	8
	b)	Explain in brief with well labelled diagram supersonic area role.	5

10 8. Derive the linearized supersonic pressure coefficient formula. i. e. $Cp = \frac{2\theta}{\sqrt{M_{cs}^2 - 1}}$ a) At a given point on the surface of an airfoil the pressure coefficient is -0.3 at very low 3 b) speed. If the freestream Mach number is 0.6. Calculate the Cp at this point. 9. Explain in brief with well labelled diagram the working principal of low speed wind tunnel. 7 a) 7 b) Explain in brief with well labelled diagram solid blockage. OR 10. Discuss the parts and working procedure of hypersonic wind tunnel. 7 a) Explain in brief the classification of a subsonic wind tunnel. 7 b) 11. Explain in brief with well labelled diagram the construction and working of a schlieren 7 a) system. Explain in brief pressure plotting technique used in wind tunnel. 7 b) OR 7 12. a) Explain in brief the principle and method for the measurement of pressure velocity and Mach number. 7 b) Write a note on smoke and tuft flow visualization method.

2