B.E. (Aeronautical Engineering) Seventh Semester (C.B.S.)

Control Engineering

P. Pages: 2	* 1 8 5 1 *	NIR/KW/18/3610
Time: Three Hours		Max. Marks: 80

- Notes: 1. All questions carry marks as indicated.
 - 2. Solve Question 1 OR Questions No. 2.
 - 3. Solve Question 3 OR Questions No. 4.
 - 4. Solve Ouestion 5 OR Ouestions No. 6.
 - 5. Solve Question 7 OR Questions No. 8.
 - 6. Solve Question 9 OR Questions No. 10.
 - 7. Solve Question 11 OR Questions No. 12.
 - 8. Due credit will be given to neatness and adequate dimensions.
 - 9. Assume suitable data whenever necessary.
 - 10. Illustrate your answers whenever necessary with the help of neat sketches.
 - 11. Use of non programmable calculator is permitted.
 - 12. Semi log, polar & simple graph paper should be available.
- 1. a) For a system having $G(s) = \frac{15}{(s+1)(s+3)}H(s) = 1$. Determine: (i) Characteristic equation,
 - (ii) Error constants, (iii) Steady state Error for unit ramp input.
 - For a system having $G(s) = \frac{20}{(s+2)(s+3)}$, H(s) = 1, Determine: (i) Type of the system, (ii) Order of the system, (iii) Steady state error for unit step input, (iv) Steady state error for unit parabolic input.

OR

- For a system having $G(s) = \frac{40}{s(0.2s+1)}$, H(s) = 1, Determine: error of the system when it is subjected to an input r(t) = 3+4t.
 - b) Derive an expression for rise time for second order under damped unity feedback control system. 6
- 3. a) A unity feedback system has $G(s) = \frac{k(s+1)}{s^2(s+1)(s+5)}$ using Routh's method, find range of k for the closed loop system to be stable.
 - b) Write down the difference between Routh's and Hurwitz methods on the basis of their advantages and disadvantages.

OR

6

6

- 4. a) Find stability of the system whose characteristic equation is $5s^6 + 8s^5 + 12s^4 + 20s^3 + 100s^2 + 150s + 200 = 0$
 - b) What are the methods of frequency response analysis? Explain need of Analysis.
- 5. a) Plot the root locus for the following system with unity feedback $G(s) = \frac{k}{s(s+1)(s+4)(s+5)}.$

b) State advantage and disadvantages of Root Locus.

OR

4

7

7

7

- A feedback system has $G(s) = \frac{15(s+1)}{(1+2s)(1+0.1s)(1+0.02s)}$, H(s) = 1. Draw Bode plot comment on stability.
- Sketch Nyquist plot for the system with $G(s)H(s) = \frac{10(s+3)}{s(s-1)}$. Comment on close loop stability.

OR

- Sketch the polar plot for the T. F, $G(s)H(s) = \frac{60}{s(s+4)(s+6)}$. Estimate GM and PM.
- 9. For the feedback control system $G(s)H(s) = \frac{40}{(s+4)(s^2+2s+2)}$. Find gain margin and stability using Nyquist plot.

OR

- 10. Write short notes on:
 - 1) Mapping theorem.
 - 2) Lead Compensation.
 - 3) PID Controller.
- 11. a) Find the T.F. for the system given as: $\begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2
 \end{bmatrix} = \begin{bmatrix}
 0 & 1 \\
 -3 & -2
 \end{bmatrix} \begin{bmatrix}
 x_1 \\
 x_2
 \end{bmatrix} + \begin{bmatrix}
 0 \\
 1
 \end{bmatrix} u(t)$ $Y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Also find the poles of the system.

b) Test the controllability and observability of the following system.

 $\mathbf{x} = \begin{bmatrix} -3 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 2 & 1 \end{bmatrix} \mathbf{U}$

and
$$Y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

OR

12. a) Obtain the phase variable state model for a system described by the differential equation.

 $\frac{d^3y(t)}{dt^3} + 5\frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} + 2y(t) = u(t)$

b) Obtain the T. F. of a system from its model.
