B.E. All Branches First Semester (C.B.S.) / B.E. (Fire Engineering) First Semester

Engineering Physics

P. Pages: 2 Time: Two Hours			NRJ/KW/1 ★ 0 9 6 9 ★ Max. Max		
	Notes	s: 1. 2. 3. 4. 5. 6. 7.	Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Assume suitable data whenever necessary.		
	List	of Const	ants:		
		1)	Plank's Constant 'h'= 6.63×10^{-34} JS		
		2)	Velocity of light $C = 3 \times 10^8 \text{ m/s}$		
		3)	Avogadro's Constant ' N_A ' = $6.023 \times 10^{26} \frac{\text{atoms}}{\text{k mole}}$		
		4)	Boltzmans Constant 'k'= $1.380 \times 10^{-23} \text{ J/K}$		
		5)	Charge of electron 'e'= 1.602×10^{-19} C		
		6)	Mass of electron 'm'= 9.11×10^{-31} kg		
1.	a)		What is Compton Effect? Explain the existence of modified & unmodified component in Compton effect.		
	b)	Show the potential	hat de - Broglie wavelength for an electron is $\frac{12.26}{\sqrt{V}}$ A where V is the accelerating	3	
	c)	A bulle waveler	et of mass 40 gms & an electron both travel with a velocity of 1000 m/sec. What ngth can be associated with them? Why is the wave nature of bullet not revealed	3	
		through	on diffraction effect? OR		
2.	a)	Explain matter.	n how the observations of Davisson - Germer experiment justify the wave nature of	5	
	b)	The x-r	ray beam is scattered by loosely bound electron at 45° from the direction of beam.	3	
		The wa	we length of scattered x-rays is 0.22 Å . What is the wavelength of incident x-rays?		
	c)	Why Co	ompton shift is not detectable for the visible range of light?	2	
3.	a)	State Heisenberg's uncertainty principle & prove that electrons can not reside inside the nucleus.			
	b)	An electron & a bullet (mass $= 50$ gms) are travelling with the same velocity of 300 m/sec. Assuming an accuracy of 0.01% in velocity measurement. Calculate the accuracy in location of their positions.			

medium. Show that the wavefunction for a particle confined in a one dimensional potential well of 5 4. a) length 'L' & infinite depth is given by $\psi_n(x) = A \cdot sin\left(\frac{n\pi x}{L}\right)$. Hence using normalization condition an ' ψ '. Show that A is given by $\sqrt{\frac{2}{r}}$. An electron is confined to move in a one dimensional potential well of length 5A°, find the 3 b) quantized energy values for the three lowest energy states. Write down: 2 c) Schrodinger's time dependent equation. Schrodinger's time independent equation in 3 - D. 5. a) For BCC & FCC cell, calculate 4 Atomic radius in terms of 'a'. ii) Atomic packing fraction. 3 b) Draw the following planes in a cubic unit cell. (112), (010) & (120). Nickel crystallizes in a FCC structure. The edge of the unit cell is 3.52A°. The atomic 3 c) weight of Nickel is 58.710kg/k mole. Determine the density of the metal. OR 6. Derive the mathematical relationship between inter planer distance, Lattice constant & 4 a) Miller indices for cubic cell. b) Explain & deduce Bragg's Law for x-ray diffraction. 3 An X-ray of wave length 3A° is diffracted at 40° from (110) plane of cubic crystal. Consider 3 c) first order diffraction. Find the Lattice constant of the structure. 7. What is Hall Effect? With the help of Labelled diagram, obtain the expression for Hall -4 Coefficient for extrinsic semiconductor. 4 b) The resistivity of doped Si is $9.27 \times 10^{-3} \Omega$ m & the Hall coefficient is 3.84×10^{-4} m³/c. Assuming that conduction is by a single type of charge carrier, Calculate the density and mobility of the carrier. Draw energy band diagram of pnp transistor in unbiased mode. 2 c) 8. What is Fermi function? Draw a graph showing its variation with energy at different 4 a) temperature & discuss it. In a n - p - n transistor connected in common base configuration, emitter current is 2 mA 3 b) and base current is 20 µA, what are the values of collector current and current gain? Explain the terms: 3 c)

Derive relation between Group velocity and phase velocity for dispersive & non dispersive

3

Drift Current

c)

Diffusion Current.

ii)