Faculty of Engineering & Technology Second Semester B.E. (C.B.S.) Examination ENGINEERING MECHANICS Paper-4

Time—Two Hours

Maximum Marks—40

INSTRUCTIONS TO CANDIDATES

- All questions carry marks as indicated.
- Answer ALL questions. rtmnuonline.com
- State and explain Varignon's Theorem. 3
 - (b) Find:
 - Component of Force P along Force Q and
 - (ii) Moment of P about Origin.

Force
$$\vec{P} = 3i - 2j + 4k$$

Force Q = 7i - 4j - 8k.

rtmnuonline.com

State Static Equilibrium Conditions of 3-D Non concurrent Force System.

OR

rtmnuonline.com

Find Resultant and its location of the Force System, (b) shown in Fig. -1. The grid is 1 Unit each along X and Y axes.

- rtmnuonline.com 3 Define Free Body Diagram. 3. (a)
 - A uniform wheel weighing 200 kN and of 600 mm diameter rests against 150 mm thick rigid block as shown in Fig. 2. Find minimum P required to Pull the wheel over the block.

Contd.

4. (a) A rope is looped over two fixed wheels each diameter 2m, as shown in Fig. 3. If $\mu = 0.25$. Determine the maximum and minimum values of P that will prevent

(b) Find the force in the Truss members shown in Fig. 4.

Fig.-4

- rtmnuonline.com
- 5. (a) State and explain the principle of virtual work. 3
 - (b) Determine Centroid wrt X and Y axes of the Figure-5. Given below:

6. (a) Determine MI wrt X and Y axes of the Figure-6. Given below:

Fig.-6 rtmnuonline.com

(b) The System consisting of two equal bars and a Block C, is held in equilibrium by force P. The weight of each bar is 100 N. Using Virtual Work method find

5

MIS-760

5

rtmnuonline.com

Determine the acceleration of the bodies, Coefficient 7. of Kinetic friction is 0.20 and Coefficient of static friction is 0.25, at all the contact surfaces. Body A weight 200 and B weighs 300 N.

(b) As shown in Fig. 9. The initial velocity of Block A is 2.4 m/sec. Find velocity after 5 sec. Coefficient of friction is 0.3.

Fig.-9 Contd.

5

OR rtmnuonline.com

8. Define coefficient of restitution. 2

The 50 N Block A has velocity 3 m/s when it strikes 100 N ball B. If coefficient of restitution is 0.8, find the position of block A, Maximum and Minimum tension in the string, Fig.-10. The coefficient of friction between the block and the surface is 0.2.

rtmnuonline.com