B.E. All Branches Second Semester (C.B.S.) / B.E. (Fire Engineering) Second Semester

Engineering Mechanics

P. Pages: 3
Time: Two Hours

2.

a)

NRT/KS/19/3290/3942

Max. Marks: 40

- Notes: 1. Solve Question 1 OR Questions No. 2.
 - 2. Solve Question 3 OR Questions No. 4.
 - 3. Solve Question 5 OR Questions No. 6.
 - 4. Solve Question 7 OR Questions No. 8.
 - 5. Due credit will be given to neatness and adequate dimensions.
 - 6. Assume suitable data whenever necessary.
 - 7. Illustrate your answers whenever necessary with the help of neat sketches.
- 1. a) State and explain Varignon's Theorem.

3

b) Calculate the resultant of the force and its X and Y intercept shown in fig. 1.

- - A force 280N in magnitude passes through point A (-2, 1, 3) towards B (4, 4, 5). **6** Co-ordinates of point C and D are (-2, 0, 1) and (2, 0, -2) respectively. Find,
 - a) Component of force F along AC, b) Moment of F about a point C,
 - c) Moment of F about a line BC.
 - b) What do you understand by equilibrium? Write equations for 3-D force system.

4

3. a) Discuss various types of force systems with neat sketches.

4

6

b) The weight of 200N hangs to chord and it is pass over a friction less pulleys as shown in figure. Find the force P and angle θ to keep the wheel in equilibrium. Weight of wheel is 300N. (Fig 2).

5

5

5

5

3

4. a) Find the forces in all members of the truss as shown in fig. 3.

b) Find support reactions at A and B as shown in Fig. 4.

5. For the figures, shown below:

- i) Locate the centroid of shaded portion of the area.
- ii) Moment of inertia with respect to indicated x and y axis.

OR

6. a) State and explain principle of virtual work.

b) Find the support reaction at A, D and E using principles of virtual work. Fig. 6.

3

7

10

- 7. a) Explain
 - i) Coefficient of Restitution.
 - ii) Law of conservation of momentum.
 - b) Determine the acceleration of each body in the system as shown in figure. Assuming the pulley to be friction less and of negligible weight. $r_1 = 0.6$ m and $r_2 = 0.3$ m. Fig. 7.

OR

8. A spherical wall A of mass 1 kg when released from rest slides down the surface of a smooth bowl and strikes another spherical ball B of mass 0.25kg resting at the bottom of the bowl.

Determine the height h from which ball A should be released so that after the impact ball B "JUST LEAVES THE BOWL". The coefficient of restitution may be assumed to be 0.8. Refer fig. 8.

Fig. 8
