B.Tech. (Biotechnology) Sixth Semester (C.B.S.)

Biochemical Reaction Engineering - II Paper - III

P. Pages : 2

Time : Three Hours

TKN/KS/16/7956

Max. Marks : 80

Notes: 1. A

3.

a)

- 1. All Questions carry equal marks.
- 2. Answer **any five** questions.
- 3. Assume suitable data wherever necessary.
- 4. Diagrams and Chemical equations should be given wherever necessary.
- **1.** a) Define Residence Time Distribution (RTD). Derive an equation for exit-age distribution for pulse input.
 - b) A sample of the tracer hytane at 320 K was injected as a pulse to a reactor and the effluent concentration measured as a function of time, resulting in following data:

T(min)	0	1	2	3	4	5	6	7	8	9	10	12	14
$C(g/m^3)$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

The measurement represent the exact concentrations at the times listed and not average values between the various sampling tests.

- i) Construct figures showing C(t) and E(T) as function of time.
- ii) Determine the fraction of material leaving that has spent between 7.75 and 8.25 min in the reactor and
- iii) 3 min or less in the reactor.
- **2.** a) How does heat affect the diffusion in solid catalysed reaction.

6

10

8

8

6

b) Describe the resistances that affect the rate of solid catalysed reaction.

- b) Obtain the reaction rate equation for a slow gas-liquid reaction with respect to mass transfer considering the mass transfer resistances.

Derive expression for rate equation for mass transfer in a gas-liquid reaction.

- 6
- 4. a) If rate of reaction is given by Michaelis Menten equation, obtain the expression to show change in substrate concentration (C_S) in batch and plug flow reactor.
- 10

6

b) Substrate A and enzyme E flow through a MFR of volume 6 lit. Find the rate equation to represent the action of enzyme on the substrate using following data.

Sr. No.	$CE_0(mol \mid \ell)$	$CA_0(mol \mid \ell)$	$C_A(\text{mol } \ell)$	ν(lit hr)
1	0.02	0.20	0.04	3
2	0.01	0.30	0.15	4
3	0.01	0.69	0.60	1.2

- 5. a) Derive the Hill's equation for reversible binding of a protein having 'n' binding sites.

 - b) Derive expression for non-competitive Inhibition of enzyme-substrate reaction. 10

TKN/KS/16/7956 1 P.T.O

6. Give the types and mechanism of catalyst deactivation.

7. The results of kinetic runs on a reaction $A \rightarrow R$ made in a experimental packed bed reactor using a fixed feed rate $F_{AO} = 10 \text{Kmol/h}$ are

16

16

W kg catalyst	1	2	3	4	5	6	7
X_A	0.12	0.2	0.27	0.33	0.37	0.41	0.44

Find:

- i) The reaction rate at 40% conversion.
- ii) Amount of catalyst needed for 40 % conversion for a feed flow rate of 400 kmol/h.
- iii) Amount of catalyst needed for 40% conversion for a feed flow rate of 400 kmol/h if the reactor employed a very large recycle of product stream.
- 8. CO₂ is to be removed from air. We plan to use NaOH solution to speed up the removal of CO₂ from air at 25°C (instead of pure water). The reaction between CO₂ and NaOH is instantaneous.

$$CO_2 + 2NaOH \rightarrow Na_2 CO_3 + H_2O$$

- i) Suggest a form of rate equation that we would use when $P_{CO2} = 1000$ Pa and the solution is 2N.
- ii) How much can absorption be speeded compared to physical absorption using water? Data: $K_9 \, a = 0.80 \, \text{mol} \mid h.m^3.Pa$,

$$K_1 a = 25 h^{-1}$$

 $H = 3000 Pa.m^3/mol.$
