http://www.rtmnuonline.com

Sr. No.	't' sec	'V' m³
7	58.8	3.406×10^{-3}
8	73.6	4.00×10^{-3}
9	89.5	4.6×10^{-3}
10	107.3	5.009×10^{-3}
iscosity	of water $= 8.93$	$37 \times 10^{-4} \text{ N-s/m}^2$

Density of water = 1000 kg/m^3 . 12

- (b) Explain Kynch theory of sedimentation. 8
- Discuss different types of impellers used in 6. agitation and mixing. 8
 - (b) What is mixing index and degree of mixing? 4
 - (c) Draw neat sketches of flow patterns of propeller (any four). 8

NTK/KW/15/7902

Faculty of Engineering & Technology B.Tech. Fifth Semester (Chemical Tech.) Examination SOLID FLUID OPERATIONS Paper—II

Time: Three Hours] [Maximum Marks: 80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Answer any **FOUR** questions.
- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- (5) Diagrams and Chemical equations should be given wherever necessary.
- (6) Retain the construction lines.
- (7) Illustrate your answers wherever necessary with the help of neat sketches.
- (8) Use of Slide rule, Logarithmic tables, Steam tables, Mollier's charts, Drawing instruments, Thermodynamic tables for moist air, Psychrometric charts and Refrigeration charts is permitted.

- 1. (a) Derive expression of power for crushing and grinding using :
 - (i) Rittinger's law
 - (ii) Kick's law

(iii) Bond's law.

(b) Derive the following equation for roll crusher.

$$\cos \alpha = \frac{(r+d)}{(r+R)}$$
.

All the terms have their usual meanings.

- 2. (a) Describe the construction and working of belt conveyor with the help of following points:
 - (i) Belt idlers
 - (ii) Belt drive arrangement
 - (iii) Belt tension devices. 10
 - (b) Explain dilute phase pneumatic conveyors. 8
 - (c) Define:
 - (i) Terminal velocity
 - (ii) Hindered settling velocity. 2
- 3. (a) Discuss different types of non mechanical classifiers for size separations with neat sketches.

12

13

MVM—47140 2 (Contd.)

- (b) What are three main categories of classifiers? Explain working of drag classifiers. 8
- 4. (a) Derive an expression for filtration at constant rate and at constant pressure.
 - (b) Explain in detail:
 - (i) Sand filters
 - (ii) Plate and frame filter press.

10

5. (a) Data for laboratory filtration of $CaCO_3$ slurry in water at 25°C are reported as follows at a constant pressure of 350 kN/m². The filter area of plate and frame press was 0.05 m² and slurry conc. was 23.47 kg/m³. Calculate the constants and R_m from the experimental data given where 't' is time in seconds and 'v' is filtrate volume collected in m³:

	Sr. No.	't' sec	'V' m³
	1	4.1	0.448×10^{-3}
	2	9.6	1.1×10^{-3}
	3	15.3	1.45×10^{-3}
	4	25.5	1.95×10^{-3}
	5	33.8	2.388×10^{-3}
	6	45.1	2.9×10^{-3}
MVM—47140		3	(Contd.)