http://www.rtmnuonline.com

NTK/KW/15/7838

Faculty of Engineering & Technology

Seventh Semester B.Tech. (Chemical Engg.)

(C.B.S.) Examination

CHEMICAL REACTOR DESIGN

Paper—III (BT CHE 703 T)

Time: Three Hours] [Maximum Marks: 80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Answer any **FIVE** questions.
- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- (5) Diagrams and Chemical equations should be given wherever necessary.
- (6) Illustrate your answers wherever necessary with the help of neat sketches.
- (7) Use of slide rule, Logarithmic tables, Steam tables, Mollier's chart, Drawing instruments, Thermodynamic tables for moist air, Psychrometric charts and Refrigeration charts is permitted.

MVM—47724 1 (Contd.)

- 1. For mixed flow of particles of single unchanging size, uniform Gas composition and chemical reaction step is controlling, derive an expression for the determination of mean conversion X_B in terms of (τ/t) .
- 2. (a) The H₂S content of a gas is to be reduced from 1% down to 1 ppm by contact in a packed column with an aqueous solution containing 0.25 mol/liter of methanolamine (MEA). Determine a reasonable L/G to be used and the height of tower needed. Data: HS and MEA react as follows:

$$H_2S + RNH_3 \rightarrow HS^- + RNH_3^+$$

and since this is an acid-base neutralisation we can regard it as irreversible and instantaneous. As a reasonable gas flow rate take $G = 3 \times 10^{-3}$ mol/cm². sec

$$K_{Al}a = 0.03$$
 sec, $K_{Ag}a = 6 \times 10^{-5}$ mol/cm³.sec.atm.

$$D_{AI} = 1.5 \times 10^{-5} \text{ cm}^2/\text{sec}, D_{BI} = 10^{-5} \text{ cm}^2/\text{sec}.$$

$$H_A = 0.115$$
 liter. atm/mol—for H_2S in water.12

(b) Spherical particles of zinc blend of size R=1~mm are roasted in an 8% oxygen stream at 900°C and 1 atm. The stoichiometry of the reaction is

$$2 \text{ ZnS} + 3O_2 \rightarrow 2 \text{ ZnO} + 2 \text{ SO}_2$$

- 8. Write short notes on (any **FOUR**) :—
 - (i) Long chain approximation used in polymerization kinetics.
 - (ii) Effectiveness factor in solid catalysed reactions.
 - (iii) Polydispersity index.
 - (iv) Adiabatic temperature and equilibrium conversion.
 - (v) Determination of rate controlling step in fluidparticle reactions. 16

MVM—47724 7 325

(b) Hydrogen sulfide is removed from coal gas by passing the gas through a moving bed of iron oxide particles. In the coal gas environment (consider uniform). The solids are converted from Fe_2O_3 to FeS by SCM/reaction control, $\tau=1$ hr. Find the fractional conversion of oxide to iron sulfide if the RTD of solids in the reactor is approximated by E curves of :

4. (a) Draw the Schematic diagram of tower and tank contactors used in gas-liquid reactions such as spray tower, packed tower, plate tower, bubble tank and agitated tank.

MVM-47724

(b) For the catalytic reaction $A \rightarrow 4R$ the following rate concentration data is available :

C _A mol/liter	$-\mathbf{r}_{\Lambda}^{1}$ mol A/hr. kg cat
.039	3.4
0.0575	5.4
4	(Contd.)

$$C_A$$
 mol/liter $-r_A^{-1}$ mol A/hr. kg cat
0.075 7.6
0.092 9.1

Directly from this data and without using a rate expression find the size of packed bed needed to treat 2000 mol/hr of pure A at 117° C (or $C_{Ao} = 0.1$ mol/liter; $\epsilon_{A} = 3$) to 35% conversion, all at 3.2 atm.

- (a) Discuss in brief the process and criteria for the selection of good contactor for gas-liquid reactions on solid catalyst.
 - (b) A gas containing A (2 mol/m³) is fed (1 m³/hr) to a plug flow reactor with recycle loop (0.02 m³ loop volume, 3 kg catalyst) and the output composition from the reactor system is measured (0.5 mol A/m³). Find the rate equation for the decomposition of A for the following:

Very large recycle A \rightarrow 3R, n = 1 50% A — 50% inerts in feed.

- 6. (a) Write the performance equations for reactors used for gas-liquid reactions on solid catalyst for the following cases :
 - (i) For reactant liquid B used in excess for plug flow of gas A and any flow of liquid B and

MVM—47724 5 (Contd.)

(ii) For reactant gas A used in excess for plug flow of liquid B and any flow of gas A.

4

(b) The elementary irreversible gas-phase reaction

$$A \rightarrow B + C$$

is carried out adiabatically in a PFR packed with a catalyst. Pure A enters the reactor at a volumetric flow rate of 20 dm³/s at a pressure of 10 atm and a temperature of 450 K.

- (i) Plot the conversion and temperature down the plug flow reactor untill an 80% conversion (if possible) is reached. The maximum catalyst weight that can be packed into the PFR is 50 kg). Assume that $\Delta P = 0.0$
- (ii) What catalyst weight is necessary to achieve 80% conversion in a CSTR? 12
- 7. (a) Discuss the mechanism of free radical polymerization in brief and hence derive the expression for $-r_{M}$.
 - (b) Illustrate (with the help of relevant plots) the procedure to find multiple steady states and hence, how to draw ignition-extinction curves in non-isothermal reactor design.

Assuming the reaction proceeds by the shrinking core model :

- (i) Calculate the time needed for complete conversion of particle and the relative resistance of ash layer diffusion during this operation.
- (ii) Repeat for particles of size R = 0.05 mm.

Data : Density of solid $\rho_{\rm B} = 4.13 \text{ gm/cm}^3$

Reaction rate constant, $K_s = 2$ cm/sec

For gases is ZnO layer $D_e = 0.08 \text{ cm}^2/\text{sec}$

Note that film resistance can safely be neglected as long as a growing ash layer is present. 4

- 3. (a) CO₂ is to be removed from air by countercurrent contact with water at 25°C.
 - (i) What are the relative resistances of gas and liquid film for this operation ?
 - (ii) What simplest form of rate equation would you use for tower design ?
 - (iii) For this removal operation would you expect reaction with absorption to be helpful? Why?

From the literature we have for CO_2 between air and water $K_g a = 80$ mol/hr. liter. atm. $K_l a = 25$ /hr, H = 30 atm. liter/mol.