B.Tech. (Chemical Engineering) Eighth Semester (C.B.S.)

Elective - III: Chemical Process Synthesis and Design

P. Pages: 2

Time: Three Hours

* 1 2 3 1 *

Max. Marks: 80

Notes:

2.

a)

- 1. All questions carry marks as indicated.
- 2. Solve **any five** questions.
- 3. Due credit will be given to neatness and adequate dimensions.
- 4. Assume suitable data whenever necessary.
- 5. Diagrams and chemical equations should be given whenever necessary.
- 6. Use of non programmable calculator is permitted.
- 1. a) Define steps involved in chemical process design & integration with onion model.
- 8

b) What is retrofitting of a plant. Explain with suitable example.

Ū

8

Benzene is to be produced from toluene according to the reaction $C_2H_5CH_3+H_2 \rightarrow C_6H_6+CH_4$

8

some of the benzene formed undergoes a number of secondary reactions in series to unwanted by products that can be characterized by the reaction to diphenyl, according the reaction $2C_6H_6 \rightleftharpoons C_{12}H_{10} + H_2$

The compositions of the reactor feed and effluents streams are as follows:

Components	Inlet flow rate Kmol/hr	Outlet flow rate Kmol/hr
H ₂	1858	1583
CH ₄	804	1083
C ₆ H ₆	13	282
$C_2H_5-CH_3$	372	93
C ₁₂ H ₁₀	00	04

Calculate the conversion, selectivity and reactor yield with respect to the

i) Toluene feed

- ii) Hydrogen feed
- b) Discuss the various types of reaction systems in details.

- 8
- **3.** a) Discuss the heterogeneous azeotropic distillation sequence with the help of suitable example and necessary diagrams.
- 8
- b) Discuss the heat integration characteristics of evaporators with appropriate placement to improve heat integration.

8

16

4. The stream data for a process are given in the following table. Steam is available between 180° and 179° C and cooling water between 20 and 40° C. for $\Delta T_{min} = 10^{\circ}$ C, the minimum hot and cold utility duties are 7 MW and 4 MW respectively. The pinch is at 90°C on the hot streams and 80° C on the cold streams.

Stream No. Type		T _s (°C)	T _T (°C)	Steam heat duty (MW)
1.	Hot	150	50	-20
2.	Hot	170	40	-13
3.	Cold	50	120	21
4.	Cold	80	110	15

- a) Calculate the targets for the minimum number of units for maximum energy recovery.
- b) Develop two alternative maximum energy recovery designs, keeping units to a minimum.
- **5.** a) Vapour flowrate in kmol/hr for each task for the separation of a four component mixture are

A/BCD	100	B/CD	90	A/B	70
AB/CD	120	BC/D	250	B/C	100
ABC/D	240	A/BC	130	C/D	220
		AB/C	140		

Determine the best distillation sequence for minimum total vapour flowrate.

b) Develop a network super structure for the separation of a mixture of five components (A-B-C-D-E) into relatively pure products using simple tasks.

8

8

6. a) Discuss the heat integration of Heat pump.

8

b) Discuss the pinch technology for Heat recovery with example.

8

8

- 7. a) A storage tank with a vent to be filled at 25°C with a mixture containing benzene with a mole fraction of 0.2 and toluene with a mole fraction of 0.8. Estimate the concentration of benzene and toluene in the tank vent:
 - a) at 25°C
 - b) Corrected to standard conditions of 0°C and 1 atm

Assume that the mixture of benzene and toluene obeys Raoult's Law and the molar mass in kilograms occupies 22.4 m³ in the vapor phase at standard conditions. The molar masses of benzene and toluene are 78 and 92 respectively. The vapor pressures of benzene and toluene at 25° C are 0.126 bar and 0.0376 bar respectively.

b) Write a short note on Inherent safety from fire, explosion & toxic release.

8

8. a) Discuss the problem table algorithm with suitable diagrams.

8

Chlorobenzene is manufactured by the reaction between benzene and chlorine. A number of secondary reactions occur to form undesired byproducts.

$$C_6 H_6 + Cl_2 \rightarrow C_6 H_5 - Cl + HCl$$

$$\mathrm{C}_6\,\mathrm{H}_5\,\mathrm{Cl} + \mathrm{Cl}_2 \to \mathrm{C}_6\,\mathrm{H}_4\,\mathrm{Cl}_2 + \mathrm{HCl}$$

$${\operatorname{C}}_6\operatorname{H}_4\operatorname{Cl}_2+\operatorname{Cl}_2\to\!\operatorname{C}_6\operatorname{H}_3\operatorname{Cl}_3+\operatorname{HCl}$$

make an initial choice of reactor type.

b) Discuss different issues that must be addressed for reactor design.

8
