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B.E. Third Semester (Computer Engineering / Information Technology) (C.B.S.) 
Applied Mathematics - III 

 

P. Pages : 4 NKT/KS/17/7242/7247 

Time : Three Hours Max. Marks : 80 

_____________________________________________________________________ 

 Notes : 1. All questions carry marks as indicated. 

 2. Solve Question 1 OR Questions No. 2. 

 3. Solve Question 3 OR Questions No. 4. 

 4. Solve Question 5 OR Questions No. 6. 

 5. Solve Question 7 OR Questions No. 8. 

 6. Solve Question 9 OR Questions No. 10. 

 7. Solve Question 11 OR Questions No. 12. 

 8. Use of non programmable calculator is permitted. 
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 b) 
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2. a) Find Laplace Transform of periodic function with period '2a' shown in following fig. 
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3. a) Find the Fourier transform of 
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4. a) 
Express 
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as a Fourier sine integral and hence evaluate 
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5. a) Find  nanZ  and hence find  n2 anZ . 
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If   )z(f)n(fZ  , then show that dZ
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6. a) 
Use convolution theorem and find 
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 b) Solve nn1n2n y2y3y    

 

subject to 0n,0y,1y n0   

where 
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7. a) Investigate the linear dependence or independence of vectors. 
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 b) 
Find the modal matrix B corresponding to matrix 
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diagonal form. 
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 c) Find the matrix represented by IA2A8A5AA3A7A5A 2345678   

where 
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by Caylay Hamilton's theorem. 
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8. a) Using Sylvester's theorem, verify Aelog A
e   

where 
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 b) Reduce the quadratic form yz2xz2xy2z3y3x3 222   to the canonical form by 

orthogonal transformation. 
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 c) Solve the differential equation 
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9. a) The content of urn I, II, III are as follows : 2 white, 2 black, 3 red, 2 white, 1 black, 1 red 

and 4 white, 5 black, 3 red balls respectively. One urn is chosen at random and two balls 

drawn, they happen tobe white and red. What is the probability that they come from urn I? 
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 b) A random variable X has the density function 
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Find (i) constant C (ii) )2X(P    (iii) 
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10. a) The joint probability function of X and Y is given by 
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Find (i) constant C  (ii) )2y,1x(P   (iii) The marginal probability function of X and Y. 
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 b) Find the conditional density function of (i) X given Y (ii) Y given X for the distribution 

function. 
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11. a) A random variable X is expected value of   10)1X(E 2  and    6)2X(E 2   

find  (i)  E(X)   (ii)  Var (X)   (iii)  x S.D. of x. 
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 b) Find moment generating function of the random variable. 
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12. a) Let X and Y be joint density function 
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find (i) )yx(E   

(ii) The conditional expectation of X given Y and Y given X. 

(iii) Conditional Variance of Y given X = 0.5 
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 b) Suppose that the customers are arriving at a ticket counter according to a Poisson process 

with a mean rate of 2 per minutes. Then in an arrival of 5 minutes, find the probability that 

the number of customers arriving is (i) Exactly 5 (ii) Less than 4 (iii) greater than 3. 
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