B.E. (Computer Science & Engineering (New) / Computer Technology) Third Semester (C.B.S.)

Applied Mathematics

P. Pages: 3
Time: Three Hours

* 0 1 1 3 *

NJR/KS/18/4372/4377

Max. Marks: 80

6

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- Solve Question 1 OR Questions No. 12.
- 8. Assume suitable data whenever necessary.
- 9. Use of non programmable calculator is permitted.
- 10. Use of normal distribution table is permitted.

Find Laplace Transform of $\frac{\sin^2 t}{t}$ and hence evaluate $\int_0^\infty e^{-t} \frac{\sin^2 t}{t} \cdot dt$.

b) Use convolution theorem to find $L^{-1}\left\{\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}\right\}$

OR

2. a) Express the function f(t) in terms of unit step function & find its Laplace Transform: 6 $f(t) = \begin{cases} t^2, & 0 < t < 1 \\ 4t, & t > 1 \end{cases}$

Solve $\frac{d^2y}{dt^2} + 9y = \sin t$, y(0) = 1, $y(\frac{\pi}{2}) = -1$, using Laplace Transform.

3. a) Obtain Fourier series for (πx) $0 \le x \le 1$

$$f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(2-x), & 1 \le x \le 2 \end{cases}$$

Hence show that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ---$

Show that the Fourier sine integral of $f(x) = \begin{cases} \pi/2, & 0 < x < \pi \\ 0, & x > \pi \end{cases}$

is $\int_{0}^{\infty} \frac{(1-\cos\pi\lambda)\sin\lambda x}{\lambda} \cdot d\lambda.$

OR

- 4. a) Obtain half range sine series for $f(x) = \pi x x^2$ in the interval $(0, \pi)$.
 - Find the Fourier cosine transform of $f(x) = \frac{e^{-ax}}{x}$, a > 0.
- 5. a) If $z\{f(n)\} = F(z)$, then prove that $z\{f(n+k)\} = z^k \left[F(z) \sum_{i=0}^{k-1} f(i) \cdot z^{-i} \right]$
 - b) Using convolution theorem, find inverse Z-Transform of $\frac{z^2}{(z-a)(z-b)}$

OR

- 6. a) Find inverse Z-transform of $\frac{z^3 z^2 + z}{(z+2)(z^2 1)}$
 - b) Solve the difference equation $y_{n+2} + 5y_{n+1} + 6y_n = 6^n$, $y_0 = 0$, $y_1 = 1$, using Z-Transform.
- 7. a) Given harmonic function $u = e^{-x} (x \sin y y \cos y)$. Find v such that f(z) = u + iv is analytic & express f(z) in terms of z.
 - Expand $f(z) = (z^2 + 4z + 3)^{-1}$ by Laurent's series valid for:
 - i) 1 < |z| < 3
- ii) |z| < 1
- iii) |z| > 3

OR

- 8. a) Find the value of $\oint \frac{12z-7}{(z-1)^2(2z+3)} \cdot dz$, where C is a circle $|z+i| = \sqrt{3}$.
 - b) Evaluate $\int_{0}^{2\pi} \frac{1}{5 4\sin\theta} \cdot d\theta$ by contour integration.
- 9. a) Determine modal matrix for $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$
 - b) Are the following vectors linearly dependent? If so, find the relation between them $X_1 = [1,1,1,3], X_2 = [1,2,3,4], X_3 = [2,3,4,7].$

By using Cayley Hamilton's theorem find A^8 , if $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.

OR

10. a) If $m = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$, find the value of $m^2 - 3m + I$ and verify the result by Sylvester's theorem.

6

b) Find the largest eigen value and corresponding eigen vector for the matrix $A = \begin{bmatrix} -4 & -5 \\ 1 & 2 \end{bmatrix}$.

6

Solve $\frac{d^2x}{dt^2} + 4x = 0$, x(0) = 1, x'(0) = 0 by matrix method.

6

11. a) Three machines A, B and C produce respectively 60%, 30% and 10% of the total number of times of a factory. The percentages of defective output of these machines are respectively 2%, 3% and 4%. An item is selected at random and is found defective. Find the probability that the item was produced by machine C.

b) A random variable X has density function

6

$$f(x) = \begin{cases} kx^2, & 1 \le x \le 2 \\ kx, & 2 < x < 3 \\ 0, & \text{otherwise} \end{cases}$$

_

Find k & the distribution function.

OR

12. a) Find mean, variance and moment generating function for exponential distribution $f(x) = \begin{cases} \alpha e^{-\alpha x}, & x > 0 \\ 0, & x \le 0 \end{cases}$

6

b) In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution.

6
