Discrete Mathematics & Graph Theory Paper - I

P. Pages: 4
Time: Three Hours

TKN/KS/16/7376/7381/7386/7391

Max. Marks: 80

5

5

5

5

7

6

Notes:

- 1. All questions carry marks as indicated.
- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 11. Use of non programmable calculator is permitted.
- 1. a) If $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$, $A = \{1, 5, 6, 7, 8\}$, $B = \{0, 1, 6, 7\}$ $C = \{1, 2, 3, 5, 8\}$, verify that
 - i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - ii) $(A \cap B)' = A' \cup B'$
 - b) Using mathematical induction, show that for all positive integers n $n^3 4n + 6$ is divisible by 3.

OR

- 2. a) Check the validity of the following argument by truth table:
 "If Roli has completed MBA, then she is assured of a good job. If Roli is assured of a good job, she is happy Roli is not happy, so Roli has not completed M. B. A.
 - b) In a group of students, 70 have a personal computer, 120 have a personal stereo and 41 have both. How many own at least one of these devices? Draw an appropriate Venn diagram also.

1

- 3. a) Let A be a set of non-zero integers and let R be a relation on A x A defined by $(a, b) R(c,d) \Leftrightarrow ad = bc$, show that R is an equivalence relation.
 - b) Let $A = \{0,1,2,3\}$, a) Write the matrices of the relation $R = \{(x,y): x + y = 3\}$ and $S = \{(x,y): x + y \le 4\}$
 - b) Find M_R∘M_S
 - $(M_R \circ M_S)' = M_S' \circ M_R'$

Consider A = B = C = R and let $f: A \rightarrow B$, $g: B \rightarrow C$ be defined by f(x) = x + 9 and c) $g(y) = y^2 + 3$ find $(f \circ g)(3), (g \circ f)(3), (f \circ f)(3), (g \circ g)(3).$

OR

Let $A = \{a, b, c\}$ and P(A) be its power set. Let \subseteq be the partial order relation on it. 6 4. a) Draw Hasse diagram of $(P(A),\subseteq)$

5

b) Consider a relation R defined on A as $R = \{(1,2),(2,3),(3,4),(2,1)\}$ and $A = \{1, 2, 3, 4\}$. 6 Find transitive closure of R. Also draw diagraph of transitive A closure relation.

c) List all possible functions from set $x = \{a, b, c\}$ to the set $y = \{0, 1\}$ indicate in each case whether the function is one-one, onto or both.

6

6

5. a) Prove that the set of matrices of the form $\begin{bmatrix} a & o \\ o & a^{-1} \end{bmatrix}$, $a \neq o$, $a \in R$ is a group with respect to matrix multiplication. Is the group abelian?

6

b) Consider a mapping $f: G \to G$ defined by $f(x) = x^4$, where G is a multiplicative group of non-zero complex numbers. Show that the mapping is homomorphism with kernel $f = \{1, -1, i, -i\}$

OR

6. Prove that cube roots of unity forms a group under multiplication. a)

6

6

A homomorphism f from G into G' with Kernel K is an isomorphism of G into G'iff b) $K = \{e\}.$

Show that the set of integers with the composition 'o' and '*' defined by 7. a) $a \circ b = a + b + 1$ and a * b = ab + a + b is a ring.

6

Define complemented, modular and distributive lattice. Show that the following lattice is b) complemented, modular but not distributive.

6

OR

Construct the switching circuit for the boolian expression, and simplify. Construct 8. a) equivalent simplified circuit also $(A \cdot B) + [A' \cdot (A + B + B')]$.

b) If R is ring such that $a^2 = a$, $\forall a \in R$, then show that

6

6

6

- i) $a+a=0, \forall a \in R$
- ii) $a+b=0 \Rightarrow a=b, \forall a,b \in R$
- iii) R is commutative ring.
- 9. a) Define in-degree and out degree of vertex. Find in-degree and out degree of each vertex of the following directed graph.

b) Draw a digraph corresponding to the following adjacency matrix and interprete the results AA^{T} , $A^{T}A$, A^{2} , A^{3} , A^{4} .

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

c) Draw the binary tree of the expression – ((5*a) + (3-(6*a))) + (a-(3*b))

OR

10. a) Use prims algorithm to find a minimal spanning tree for the given graph.

b) Define:

6

6

- i) Null graph
- ii) Trial

iii) Reachable Node

- iv) Tree
- v) Height of the tree
- vi) Radius of a graph.
- c) Draw the digraph corresponding to matrix.

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

find its complement and write the matrix of that complemented graph.

How many people must you have guarantee that at least g of them will have birthday in 5 11. a) the same day of the week Solve the recurrence relation using generating function $|a_n| \ge 3a_{n-1} + 2$, $|a_0| \ge 1$. 5 h) OR 5 Prove that c(n+1, r) - c(n, r) + c(n, r-1)12 a) Use generating function technique to solve following recurrence relation: 5 b) $a_n = 9a_{n-1} + 20a_{n-2} = 0$ given $a_0 = -3$, a_1
