
|    | Pages :<br>ne : Thr | ree Hours * 0 7 7 4 *   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>TKN/KS/16/7384</b> Max. Marks: 80 |
|----|---------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|    | Notes               |                         | <ol> <li>All questions carry marks as indicated.</li> <li>Solve Question 1 OR Questions No. 2.</li> <li>Solve Question 3 OR Questions No. 4.</li> <li>Solve Question 5 OR Questions No. 6.</li> <li>Solve Question 7 OR Questions No. 8.</li> <li>Solve Question 9 OR Questions No. 10.</li> <li>Solve Question 11 OR Questions No. 12.</li> <li>Due credit will be given to neatness and adequate dimensions</li> <li>Assume suitable data wherever necessary.</li> </ol> |                                      |
| 1. | a)                  |                         | 10. Illustrate your answers wherever necessary with the help of necessary with the help of necessary with the help of necessary.                                                                                                                                                                                                                                                                                                                                           | 8                                    |
|    |                     | i)                      | Unrestricted grammar is also a context free grammar.  a) True  b) False                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
|    |                     | ii)                     | Type 2 grammar is used in.  a) Turing machine b) Push down Automata c) Linear bounded Automata                                                                                                                                                                                                                                                                                                                                                                             |                                      |
|    |                     | iii)                    | <ul> <li>Which of the following is regular grammar &amp; why?</li> <li>a) S → aaBa   ∈</li> <li>b) S → aaB   ab   a</li> <li>c) Sa → aSaba   ab</li> </ul>                                                                                                                                                                                                                                                                                                                 |                                      |
|    |                     | iv)                     | Which of the following is type o grammar but not type 1 & why?  i) S→∈  ii) aS → abaS  iii) abSa → abA                                                                                                                                                                                                                                                                                                                                                                     |                                      |
|    | b)                  | 1.2.                    | ve that by principal of induction.<br>3+2.3.4++n (n+1) (n+2)<br>(n+1)(n+2)(n+3)                                                                                                                                                                                                                                                                                                                                                                                            | 5                                    |
|    |                     |                         | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |
| 2. | a)                  | Stat                    | e and define Pigeon-hole principle with example ?                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                    |
|    | b)                  | Exp<br>i)<br>iii)<br>v) | Prefix of string Proper prefix & proper sufix.  Length of String  ii)  Sufix of string iv)  Alphabet                                                                                                                                                                                                                                                                                                                                                                       | 5                                    |
|    | c)                  | Wri                     | te a note on countability and Diagonalization.                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |

TKN/KS/16/7384

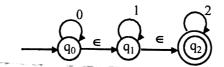
3. a) Convert the following NFA into equivalent DFA.



b) Design a mealy machine to count no. of occurrence of ab and convert the resultant machine into Moore M/C.

OR

4. a) Design a DFA for a string of decimal digits that are divisible by 3.


b) State and explain application of FA.

5

6

c) Convert following NFA with ∈-move into NFA without ∈-moves.

3



5. a) Design the minimum state DFA from following regular expression.

(ab)\*bab\* + ab\*(bb)\*.

Construct a Regular expression from following FA.

8

b) Convert the following right linear grammar into left linear grammar.

5

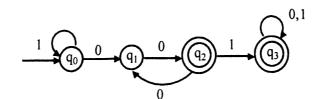
 $S \rightarrow abS \mid aA$  $A \rightarrow aaA \mid ba$ 

OR

6. a) Convert the grammar into GNF.

6

 $S \rightarrow aSa \mid bBb$ 


6

 $B \rightarrow abB \mid aaAa$ 

 $A \rightarrow Aa \mid a$ 

b)

7



| 7.  | a)           | Construct CFG from the following $L = \{a^n b^n \mid n \ge 1\}$ i.e construct PDA from given language then convert the generated PDA into CFG. | 14 |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     |              | OR                                                                                                                                             |    |
| 8.  | a)           | Explain following terms.  i) NPDA & DPDA  ii) Model of PDA  iii) Acceptance by stack and acceptance by final state                             | 9  |
|     | b)           | Design a PDA from CFG.<br>S→aSa   aSb   a                                                                                                      | 5  |
| 9.  | a)           | Explain the types of Turing machine.                                                                                                           | 6  |
|     | b)           | Design a the Turing machine to multiply two unary numbers?                                                                                     | 7  |
|     |              | OR                                                                                                                                             |    |
| 10. | a)           | Design a Turing M/c to copy a string over $\Sigma = \{a, b\}^*$ .                                                                              | 7  |
|     | b)           | Explain the model of Linear Bounded Automata.                                                                                                  | 6  |
| 11  | . a)         | Explain the properties of recursively Enumerable language?                                                                                     | 7  |
|     | h            | Write short note or, following.                                                                                                                | 6  |
|     |              | i) Decidability & Solvability                                                                                                                  |    |
|     |              | ii) Primitive recursive function                                                                                                               |    |
|     |              | OR                                                                                                                                             |    |
| 1   | <b>2</b> . a | ) What is PCP ? Explain modified PCP.                                                                                                          | 6  |
|     | h            | Solve using Ackerman function A (1,1), A (2,1), A (2,2) A (2,3).                                                                               | 7  |

\*\*\*\*\*\*\*