| | Pages :
ne : Thr | ree Hours * 0 7 7 4 * | | TKN/KS/16/7384 Max. Marks: 80 | |----|---------------------|-------------------------|--|--------------------------------------| | | Notes | | All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. Solve Question 11 OR Questions No. 12. Due credit will be given to neatness and adequate dimensions Assume suitable data wherever necessary. | | | 1. | a) | | 10. Illustrate your answers wherever necessary with the help of necessary with the help of necessary with the help of necessary. | 8 | | | | i) | Unrestricted grammar is also a context free grammar. a) True b) False | | | | | ii) | Type 2 grammar is used in. a) Turing machine b) Push down Automata c) Linear bounded Automata | | | | | iii) | Which of the following is regular grammar & why? a) S → aaBa ∈ b) S → aaB ab a c) Sa → aSaba ab | | | | | iv) | Which of the following is type o grammar but not type 1 & why? i) S→∈ ii) aS → abaS iii) abSa → abA | | | | b) | 1.2. | ve that by principal of induction.
3+2.3.4++n (n+1) (n+2)
(n+1)(n+2)(n+3) | 5 | | | | | OR | | | 2. | a) | Stat | e and define Pigeon-hole principle with example ? | 5 | | | b) | Exp
i)
iii)
v) | Prefix of string Proper prefix & proper sufix. Length of String ii) Sufix of string iv) Alphabet | 5 | | | c) | Wri | te a note on countability and Diagonalization. | | TKN/KS/16/7384 3. a) Convert the following NFA into equivalent DFA. b) Design a mealy machine to count no. of occurrence of ab and convert the resultant machine into Moore M/C. OR 4. a) Design a DFA for a string of decimal digits that are divisible by 3. b) State and explain application of FA. 5 6 c) Convert following NFA with ∈-move into NFA without ∈-moves. 3 5. a) Design the minimum state DFA from following regular expression. (ab)*bab* + ab*(bb)*. Construct a Regular expression from following FA. 8 b) Convert the following right linear grammar into left linear grammar. 5 $S \rightarrow abS \mid aA$ $A \rightarrow aaA \mid ba$ OR 6. a) Convert the grammar into GNF. 6 $S \rightarrow aSa \mid bBb$ 6 $B \rightarrow abB \mid aaAa$ $A \rightarrow Aa \mid a$ b) 7 | 7. | a) | Construct CFG from the following $L = \{a^n b^n \mid n \ge 1\}$ i.e construct PDA from given language then convert the generated PDA into CFG. | 14 | |-----|--------------|--|----| | | | OR | | | 8. | a) | Explain following terms. i) NPDA & DPDA ii) Model of PDA iii) Acceptance by stack and acceptance by final state | 9 | | | b) | Design a PDA from CFG.
S→aSa aSb a | 5 | | 9. | a) | Explain the types of Turing machine. | 6 | | | b) | Design a the Turing machine to multiply two unary numbers? | 7 | | | | OR | | | 10. | a) | Design a Turing M/c to copy a string over $\Sigma = \{a, b\}^*$. | 7 | | | b) | Explain the model of Linear Bounded Automata. | 6 | | 11 | . a) | Explain the properties of recursively Enumerable language? | 7 | | | h | Write short note or, following. | 6 | | | | i) Decidability & Solvability | | | | | ii) Primitive recursive function | | | | | OR | | | 1 | 2 . a |) What is PCP ? Explain modified PCP. | 6 | | | h | Solve using Ackerman function A (1,1), A (2,1), A (2,2) A (2,3). | 7 | *******