NRT/KS/19/3363

B.E. (Electrical Engineering (Electronics & Power)) Fourth Semester (C.B.S.)

Applied Mathematics-IV

Time: Three Hours

* 0 6 3 7 *

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.

P. Pages: 4

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Ouestion 5 OR Ouestions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 11. Use of non programmable calculator is permitted.
- 12. Use of normal distribution table is permitted.
- 1. a) Define transfer function of the system and obtain transfer function of series R -C circuit. 6
 - b) Obtain unit step response of unity feedback system whose open loop transfer function is $G(s) = \frac{4}{s(s+5)}$

OR

- 2. a) Give the block diagram of a simple closed loop control system and derive expression for its transfer function.
 - b) Define:

 i) Step signal
 ii) Ramp signal
 iii) Parabolic signal

 and also find their Laplace transform.
- 3. a) Find the Z-transform of $\cos n\theta$ and hence find $Z\{a^n \cos n\theta\}$.
 - b) If $Z\{f(n)\} = F(z)$, then prove that $Z\{f(n+k)\} = z^k \left[F(z) \sum_{i=0}^{k-1} f(i) \cdot z^{-i}\right], k > 0.$ 6

OR

4. a) By using convolution theorem. find $Z^{-1}\left\{\frac{z^2}{(z-1)(z-3)}\right\}$

6

Solve the difference equation b) $y_{n+2} + 4 y_{n+1} + 3y_n = 2^n, y_0 = 0, y_1 = 1$ using Z-transform.

6

Define: 5. a)

6

- i) Fuzzy set,
- ii) α - level set and
- iii) Normalized fuzzy set.
- Find $A \cap B$, $A \cup B$ and $A \times B$, b)

6

where

$$A = \frac{0.9}{1} + \frac{0.7}{3} + \frac{0.2}{4} + \frac{0.3}{6}$$

$$B = \frac{0.1}{2} + \frac{0.4}{3} + \frac{0.5}{4} + \frac{0.8}{5}$$

are defined on $U = \{1, 2, 3, 4, 5, 6\}.$

OR

Define measure of fuzziness of a fuzzy set. Find the measure of fuzziness for the fuzzy 6. a) set $A = \frac{0.2}{x_1} + \frac{0.4}{x_2}$.

6

b) If the universe of discourse is $X = \{0, 1, 2, 3, 4, 5,\}$, then write the fuzzy set A whose membership grade function is $\mu_A\left(x\right) = \frac{x}{x+2}$. Also find \overline{A} , scalar cardinality of A and 0.2 cut of A.

6

7. Find by Newton - Raphson method, the real root of the equation $3x - \cos x - 1 = 0$. a)

5

7

Apply Crout's method to solve the equations. b)

$$3x + 2y + 7z = 4,$$

$$2x + 3y + z = 5,$$

$$3x + 4y + z = 7.$$

OR

8. Find a real root of the equation a)

$$x \log_{10} x = 1.2$$

by Regula - Falsi method

Correct to four decimal places.

6

6

b) Solve

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

by Gauss - Seidel method.

7

7

7

7

7

9. a) Using modified Euler's method, solve the equation:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + \left| \sqrt{y} \right|, \ y(0) = 1$$

for the range $0 \le x \le 0.4$,

with h = 0.2.

b) Compute y (0.2), given

$$\frac{dy}{dx} + y + x y^2 = 0, y(0) = 1$$

by taking h = 0.1 using Runge - Kutta method of fourth order (correct to four decimals).

OR

10. a) Employ Taylor's method to obtain approximate value of y at x = 0.2 for the differential equation

$$\frac{dy}{dx} = 2y + 3e^x, y(0) = 0.$$

compare the numerical solution obtained with the exact solution.

b) Solve the following differential equation by Milne's predictor corrector method:

$$\frac{dy}{dx} = \frac{1}{2} (1 + x^2) y^2, \ y(0) = 1,$$

$$y(0 \cdot 1) = 1 \cdot 06, \ y(0 \cdot 2) = 1 \cdot 12, \ y(0 \cdot 3) = 1 \cdot 21.$$
Evaluate $y(0, 1)$ and $y(0, 5)$

Evaluate y(0.4) and y(0.5).

- 11. a) Three machines A, B and C produce respectively 50%, 30% and 20% of the items in a factory. The percentage of defective output of these machines are 3%, 4% and 5% respectively. One item is selected at random and is found to be defective. Find the probability that the item was produced by machine A.
 - b) Let $f(x) = \frac{C}{3^x}$, x = 1, 2, 3, ---- is the probability function of a random variable X.

Find

i) Constant C and

- ii) $P(X \ge 3)$.
- c) Let X be a random variable with density function

$$f\left(x\right) = \begin{cases} 2e^{-2x} &, & x \ge 0 \\ 0 &, & \text{otherwise.} \end{cases}$$

Find

i) E(X)

ii) $E(X^2+5)$

iii) Var (X)

iv) S. D. of X.

OR

12. a) Find the moment generating function of random variable.

$$X = \begin{cases} 1 & , & \text{Prob. } \frac{1}{2} \\ -1 & , & \text{Prob. } \frac{1}{2} \end{cases}$$

Hence find first four moments about origin.

b) Find the coefficient of

7

6

5

- i) Skewness and
- ii) Kurtosis of distribution:

$$f(x) \begin{cases} \frac{4x(9-x^2)}{81} &, & 0 \le x \le 3\\ 0 &, & \text{otherwise.} \end{cases}$$

- c) The number of monthly breakdowns of a computer, is a random variable having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month
 - i) Without breakdown and
 - i) With at least one breakdown.
