B.E. (Electronics Engineering / Electronics & Telecommunication / Electronics & Communication Engineering) Sixth Semester (C.B.S.)

P. Pages: 2

Digital Signal Processing

Time: Three Hours

TKN/KS/16/7468/7473

Max. Marks: 80

6

2226

Notes: 1.

- All questions carry equal marks as indicated. 2.
- Solve Question 1 OR Questions No. 2. 3.
- Solve Question 3 OR Questions No. 4. 4.
- Solve Question 5 OR Questions No. 6.
- Solve Question 7 OR Questions No. 8.
- Solve Question 9 OR Questions No. 10. 7.
- Solve Question 11 OR Questions No. 12 8.
- Assume suitable data whenever necessary. 9.
- Illustrate your answers whenever necessary with the help of neat sketches. Use of non programmable calculator is permitted.
- a)
 - Explain different types of discrete system with one example. b)

Consider the analog system $X_a(t) = 3\cos 100\pi t$

Determine the minimum sampling rate required to avoid the aliasing.

ii) Suppose that the signal is sampled at the rate fs=200Hz. What is the discrete time signal obtained after sampling.

iii) What is the frequency $O < F < \frac{fs}{2}$ of the sinusoidal that yields samples identical to those obtained in port (ii).

2. a) Show that the necessary and sufficient conditions for stability of LTI system is
$$\sum_{n=0}^{+\infty} |h(n)| < \infty$$

 $\sum |h(n)| < \infty$

- The impulse response of a linear time invariant system is $h(n) = \{1, 2, 1, -1\}$ Determine b) the response of the system to the input signal $x(n) = \{1, 2, 3, 1\}$ by using graphical method.
- State and prove any two properties of z-transform. 3. a)

Determine the z-transform of the signal b) $x(n) = \left(\frac{1}{2}\right)^n \mu(n)$

Also sketch the region of convergence (ROC).

Find the inverse z-transform of the following using Long division method when x(n) is a) 4. causal and when x(n) is anticausal

1

$$x(z) = \frac{1 + 2z^{-1}}{1 - 2z^{-1} + z^2}$$

P.T.O

6

7

6

Determine the unit response of the system whose difference equation is b) y(n) - 0.7 y(n-1) + 0.12 y(n-2) = x(n-1) + x(n-2) if y(-1) = y(-2) = 1.

- 7
- Find 8 point DFT of the following sequence using decimation in frequency (DIF) FFT 5. algorithm

14

 $x(n) = (-1)^n, 0 \le n \le 7$

Also compute the number of complex addition and multiplication required.

Determine the sequence x₃(n) corresponding to the circular convolution of the sequence 6. $x_1(n)$ and $x_2(n)$ where $x_1(n) = \{2, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$

14

- using DFT and IDFT method.
- 7.

13

Obtain direct form-I (DF-I), Direct form-II (DF-II), cascade and parallel form realization for the system y(n) = -0.1 y(n-1) + 0.2 y(n-2) + 3x(n) + 3.6 x(n-1) + 0.6 x(n-2).

Design digital Butterworth filter that satisfies the following constraints using Bilinear transformation Assume T = 1 sec.

13

 $0.707 \le |H(w)| \le 1 \dots 0 \le w \le 0.2\pi$

$$|H(w)| \le 0.2$$
 $0.6 \le w \le \pi$

9.

Design ideal Low pass filter with frequency response.

13

Hd
$$(e^{jw}) = 1.... \text{ for } -\frac{\pi}{2} \le |w| \le \frac{\pi}{2}$$

= 0.... \text{ for } \frac{\pi}{2} \le |w| \le \pi.

Find the value of h(n) for N=11. Find H(z). Plot the magnitude response.

10.

Determine the coefficient of linear phase FIR filter of length M=15 which has symmetric unit sample response and frequency response that satisfies the conditions.

$$HR\left(\frac{2\pi k}{15}\right) = \begin{cases} 1.....K = 0, 1, 2, 3\\ 0.4....K = 4\\ 0....K = 5, 6, 7 \end{cases}$$

6

7

Explain the sampling rate conversion by non-integer factor with the help of block diagram. 11. a) b)

Given the sequence
$$x(n)$$

 $x(n) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Find the output sequence $y_1(n)$ and $y_2(n)$ for the multirate structure shown in fig. Q. 11(b)

•Fig. Q.11 (b)

What is multirate signal processing? Explain its applications. 12. a)

6

Explain sub band coding of speech signals with the help of block diagram. b)
