8. (a) A lowpass filter is to be designed with the following desired frequency response:

$$Hd(e^{j\omega}) = \begin{cases} e^{-j2\omega} &, -\pi/4 \le \omega \le \pi/4 \\ 0 &, \pi/4 \le |\omega| \le \pi \end{cases}$$

Define the filter coefficients hd(n) if the window function is defined as

$$\omega(n) = \begin{cases} 1 & \text{, } 0 \le n \le 4 \\ 0 & \text{, otherwise} \end{cases}$$

Also determine the frequency response H(e^{jω}) of designed filter.

- (b) What are different types of windows used for FIR filter design.
- (a) Find circular convolution of the following signals using DFT-IDFT method

$$x_1(n) = \{1, 2, 3, 4\}, x_2(n) = \{1, 0, 0, 1\}.$$

(b) Find the response y(n) to the input

$$x(n) = \{2, -1, 0, 0, 1, 1, 1, 1, -3, -2\}$$

when the impulse response of the system is $h(n) = \{1, 0, 1\}$ using overlap save method. 6

10. Compute 8-point FFT of the sequence:

$$x(n) = (-1)^{n} 0 \le n \le 7$$

Using DIF-FFT algorithm.

13

1050

VRK/KS/14/3153/3474

Faculty of Engineering & Technology Eighth Semester B.E. (Electrical Engg.) / Eighth Semester B.E.P.T (Electric) Examination DIGITAL SIGNAL PROCESSING Elective—II Sections—A & B

Time—Three Hours]

[Maximum Marks—80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Answer THREE questions from Section A and THREE questions from Section B.
- (3) Assume suitable data wherever necessary.
- (4) Illustrate your answers wherever necessary with the help of neat sketches.

SECTION-A

- (a) Explain the advantages and limitations of Digital Signal Processing System. State its applications.
 - (b) Explain the following system with examples:
 - (i) Stable or unstable
 - (ii) Causal or non causal
 - (iii) Linear or non linear
 - (iv) Time variant or time invariant.

8

MIS-48944

Contd.

2. (a) Consider the following analog signals:

$$x_1(t) = 2 \cos 100 \pi t$$
, $x_2(t) = 2 \cos 500 \pi t$.

Find the sample signals $x_1(n)$ and $x_2(n)$ if sampling rate is 200 samples/sec. Is it possible to distinguish $x_1(n)$ and $x_2(n)$ at sampling rate of 200 Hz? Explain. If not, explain how the sampled signals can be distinguished.

(b) Compute the convolution of the following using graphical method:

$$x_1(n) = a^n u(n), x_2(n) = u(n-3)$$

- (a) Find z-transform of the following signals. Also draw RoC:
 - (i) $x(n) = 9^n \cos \omega_{on} 4(n)$

(ii)
$$x(n) = \left(-\frac{1}{3}\right)^n u(n) - \left(\frac{1}{2}\right)^n u(-n-1)$$
.

(b) Find the Diverse z-transform of following:

$$X(z) = (1 + 2z^{-1} + z^{-2})/(1 - 1.5z^{-1} + 0.5z^{-2})$$

using partial fraction method.

 (a) State and move differentiation and convolution property of z-transform.

MIS-48944 2 . Contd.

http://www.rtmnuonline.com

(b) Give the z-transform of h(n):

H(z) =
$$\frac{1}{\left(1 - \frac{1}{3}z^{-1}\right)\left(1 - \frac{3}{2}z^{-1}\right)\left(1 + 2z^{-1}\right)}$$

Find the impulse response h(n) such that is corresponds to a stable system.

- (c) Why is it necessary to indicate RoC for z-transform of any signal?
- 5. (a) Determine energy density spectrum $S_{xx}(\omega)$ of the signal $x(n) = a^n u(n)$, a < 1, sketch $S_{xx}(\omega)$ for a = 0.5 and a = -0.5.
 - (b) Find Fourier transform of the signal $x(n) = z^n u(-n)$.

SECTION-B

 Obtain DF – I, DF – II, cascade and parallel form validation for the system :

$$H(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - 0.75z^{-1} + 0.125z^{-2}}$$

 (a) Explain Bilinear transformation method of design of digital IIR filter.

3

(b) An analog filter has transfer function:

$$H(s) = \frac{10}{s^2 + 7s + 10}$$

Design a digital filter equivalent to this using impulse variant method.

MIS-48944

· Contd.

http://www.rtmnuonline.com