B.E. (Electronics Engineering / Elect.& Telecommunication / Elect.& Communication Engineering) Seventh Semester (C.B.S.)

DSP Processor & Architecture

NRT/KS/19/3527/3535

Time : Three Hours			* 0 2 4 0 *			Max. Marks	Max. Marks : 80	
	Note	s: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	All questions ca Solve Question Solve Question Solve Question Solve Question Solve Question Solve Question Due credit will Illustrate your a Use of non prog	rry marks as indicate 1 OR Questions No. 3 OR Questions No. 5 OR Questions No. 7 OR Questions No. 9 OR Questions No. 11 OR Questions No be given to neatness answers whenever nec- rammable calculator	d. 2. 4. 6. 8. 10. . 12. and adequate of cessary with the is permitted.	limensions. he help of neat sketches.		
1.	a)	Explain Which a	the difference be architecture is pre-	tween von-Neumann ferred for DSP appli	and Harvard cation and wh	architecture for the computer. y?	7	
	b)	Explain what is meant by instruction pipelining? A non-pipelined system takes 100ns to process a task. The same task can be performed in 4 segments pipelined into 20ns each. Determine speed up ratio of pipeline for 1000 tasks.						
2.	a)	Draw basic block diagram of MAC unit and explain how convolution is performed using a single MAC unit?						
	b)	Distinguish between multiple access memory and multiported memory.						
3.	a)	Let the content of ARP, AR2 and INDX register be 2, 1250h and 2h respectively and contents of data memory location 1240h-1260h be filled with the data 2345h. Let SXM be 0. Find the value of ACC and AR2 after sequential execution of following instructions i) LACC *, 0 ii) LACC * -, 1 iii) LACC * -, 3						
	b)	Explain	the status registe	r STI of TMS320C5	X in detail.		7	
				OF	ł			
4.	a)	Explain	the architecture	of DSP TMS320C5X			8	
	b)	Explain the status register STO of TMS320C5X in detail.						
5.	a)	Explain	the following in	tructions LST, LAR,	, ADD, SUB, 1	LMMR.	8	
	b)	Write the contents of memory locations after execution of LST # 0, 00h if DP = 8 of Fig (a). Before Instruction Execution						
				Data men	3E00h			
				ST0	5E00h			

P. Pages: 2

8

5

OR

6.	a)	Explain following instructions
----	----	--------------------------------

MACD

2) LACC * +, 0
4) MPY

b) Write the content of accumulator after execution of LACC *, 4 if SXM = 0 of fig. (b) Before Instruction Execution

7.	a)	Draw and Explain central processing unit of C54X in detail.							
	b)	How many buses are there in C54X. Explain each in detail.	6						
		OR							
8.	a)	How Interrupts are handled in TMS320 C54X processor. Explain with flow chart.							
	b)	Explain following data addressing modes of C54X processor.1) Absolute2) Accumulator3) Stack	6						
9.	a)	Compare the features of DSP processors C5X, C54X, C6X.							
	b)	Write steps of creating new project and building Assembly language code in CCS.	7						
		OR							
10.	a)	Give the brief introduction of Motorola DSP563XX processor.							
	b)	Draw the architecture of C6X and explain the working of central processing unit and data paths.							
11.	a)	Explain filtering of long data sequence using overlap and save method.							
	b)	Find the output $y(n)$ of a filter whose impulse response is $h(n) = \{9 \ 10\}$ and input signal $x(n) = \{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8\}$ using overlap and add method.							
		OR							
12.		Write short notes on any three.a) Interpolation filterb) Decimation filter	13						

Wavelet filterd)Comparison of DFT and FFT time complexity.

c)