B.E. (Electronics Engineering / Elect. Telecommunication / Elect. Communication Engineering) Fourth Semester (C.B.S.)

Applied Mathematics - IV

P. Pages: 3

* 0 1 5 8 *

NRJ/KW/17/4408/4413

Max. Marks: 80

6

6

6

6

6

6

Notes: 1.

Time: Three Hours

- 1. All questions carry marks as indicated.
- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Assume suitable data whenever necessary.
- 9. Use of non programmable calculator is permitted.
- 10. Use of normal distribution table is permitted.
- 1. a) Find the real root of $x \log_{10} x 2 = 0$ by Newton-Raphson method correct to three places of decimal.
 - b) Use Crout's method to solve the equations.

$$x_1 + 2x_2 + 3x_3 = 7$$

$$2x_1 + 7x_2 + 15x_3 = 26$$

$$3x_1 + 15x_2 + 41x_3 = 62$$

c) Use Runge-Kutta to find approximate value of y for x = 0.2 when

$$\frac{dy}{dx} = \frac{x^2 + y^2}{10}$$
; y (0) = 1 by taking h = 0.1.

OR

2. a) Solve by Gauss-Seidel method:

$$4x + 11y - z = 33$$

$$6x + 3y + 12z = 36$$

$$8x - 3y + 2z = 20$$

- b) Use modified Euler's method to solve the equation $\frac{dy}{dx} = \log(x + y)$ given y(0) = 2, for x = 0.8, h = 0.4.
- c) Find largest eigen value and corresponding eigen vector for the matrix.

$$\begin{vmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \end{vmatrix}$$

- 4 2 3
- 3. a) Find Z-Transform of $\frac{(n+1)(n+2)}{2!}a^n$.

b) Find inverse Z-Transform of $\frac{z^2 + z}{(z-1)(z^2+1)}$.

6

OR

4. a) Find inverse Z-Transform of $\frac{z^3}{(z-2)^3}$, |z| > 2.

6

6

b) Solve using Z-Transform $y_{n+2} - y_n = 2^n$; $y_0 = 0$, $y_1 = 1$.

4

5. a) Solve in series.

8

$$(2x + x^3)y'' - y' - 6xy = 0$$

by Frobenius method.

b) Prove that.

 $4J_n''(x) = J_{n-2}(x) - 2J_n(x) + J_{n+2}(x)$

OR

6. a) Find $p_0(x)$, $p_1(x)$, $p_2(x)$, $p_3(x)$ by using Rodrigues' formula.

6

b) If $f(x) = \begin{cases} 0; -1 < x < 0 \\ 1; 0 < x < 1 \end{cases}$

6

obtain Legendre's expansion for f (x).

7. a) Pair of dice is tossed. If the numbers appearing are different, find the probability that the sum is even.

5

b) An urn holds 5 white and 3 black marbles. If two marbles are drawn at random without replacement and X denotes the number of white marbles

7

- i) Find the probability function and
- ii) The distribution function &
- iii) Graph of prob. fun^{n &} distribution function.

OR

8. a) Find the distribution function for r.v. X whose density function is

6

 $f(x) = \begin{cases} \frac{x}{2}; 0 \le x \le 2\\ 0; \text{ otherwise} \end{cases}$

Hence or otherwise find p (X > 1).

b) The joint probability function of two discrete random variable X & Y is given by $f(x,y) = \begin{cases} cxy; x=1,2,3 & y=1,2,3 \\ 0 & ; otherwise \end{cases}$

6

find i) The constant C

- ii) $p(x \ge 2)$
- iii) Marginal prob. function of x and y

- 9. a) Find mathematical expectation of discrete random variable X whose prob. function is $f(x) = \left(\frac{1}{2}\right)^{x}; x = 1, 2, 3.$
 - Find the mean, variance and moment generating function for exponential distribution. 8 $f(x) = \begin{cases} \alpha e^{-\alpha x} & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{cases}$

6

8

OR

10. a) Find the skewness and kurtosis for the probability distribution. $f(x) = \begin{cases} \frac{4x(9-x^2)}{81}; \ 0 \le x \le 3\\ 0 \end{cases}; \text{ otherwise}.$

b) Find (i) Mean (ii) Variance & (iii) std deviation for the $f(x) = \begin{cases} \frac{1}{b-a} ; a < x < b \\ 0 ; \text{otherwise} \end{cases}$

- 11. a) Prove central limit theorem for the independent variables. $X_k = \begin{cases} 1 & \text{; prob p} \\ -1 & \text{; probq.} \end{cases}$
 - b) If 3% of the electric bulbs manufactured by a company are defective, find the probability that in a sample of 100 bulbs

 (i) Exactly 2, (ii) More than 5 & (iii) At the most 2 will be defective.

OR

- 12. a) Find the probability of getting between 2 heads to 4 heads in 10 tosses of fair coin using

 (i) Binomial distribution and
 - (ii) The normal approximation to the Binomial distribution.
 - b) Verify central limit theorem for a random variable X which is Binomially distributed with mean np and std deviation \sqrt{npq} .

b)