B.E. (Electronics Engineering / Electronics Telecommunication Engineering / Electronics Communication Engineering) Third Semester (C.B.S.)

Network Analysis & Synthesis

P. Pages: 5 NRJ/KW/17/4356/4361

Time : Three Hours

Max. Marks : 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Assume suitable data wherever necessary.
- 9. Illustrate your answers whenever necessary with the help of neat sketches.
- 10. Use of non programmable calculator is permitted.
- 1. a) Write the equilibrium equations in matrix form on MESH BASIS for the network shown in fig. 1(a).

7

6

b) Convert the circuit shown in fig. 1(b) into a single voltage source.

OR

NRJ/KW/17/4356/4361 1 P.T.O

2. a) Determine current 'I' using NODAL ANALYSIS of the network shown in fig. 2 (a).

7

6

7

7

b) Construct the DUAL for the network shown in fig. 2(b).

3. a) Find I_{AB} shown in Fig. 3(a) by 'SUPERPOSITION THEOREM'.

b) Find 'NORTON's EQUIVALENT NETWORK' across the terminals a and b of the network shown in fig. 3 (b)

OR

4. a) For the network shown in fig. 4 (a), find change in current 'I' by 'COMPENSATION THEOREM, if $j5\Omega$ increases to $j8\Omega$.

8

6

7

6

6

b) For the network shown in fig. 4 (b) find the impedance to be connected across A and B for the maximum power. 6

- 5. a) For R.L.C. series circuit derive the expression for the resonant frequency and show the variation of R, X_L , X_C , $(X_L X_C)$, Z and I on the same graph.
 - b) Compare series and parallel resonance in a.c. circuit.

OR

6. a) A 24 μF capacitor is connected in series with a coil whose is 5 mH. Determine :

i) Resonant frequency

- ii) Resistance of the coil if 40 V voltage source operating at resonance frequency causes a circuit current of 3.6 mA.
- iii) Quality factor of the coil.
- iv) Bandwidth and selectivity.
- b) Derive the condition for resonance in R.L.C. parallel circuit and plot Z Vs F graph showing the resonant frequency.
- 7. a) Design a constant K band pass filter with cut-off frequencies 2 kHz and 5 kHz and nominal characteristics impedance of 600Ω .
 - b) Explain band stop and low pass filters.

OR

8. a) The circuit shown in fig. 8 (a) is LOW PASS FILTER for this filter -

i) Show that cut-off frequency, $f_c = \frac{1}{2\pi RC}$ for the condition $v_{out} = \frac{1}{\sqrt{2}}v_{in}$.

ii) Design a low pass filter with $f_c = 800 \text{ Hz}$.

8

6

7

b) Design a symmetrical π -attenuator to give 20-db attenuation and having characteristics impedance of 100Ω .

9. a) Find the current $'i_2(t)'$ in the inductor L_2 after switch - k is closed at t=0 using LAPLACE TRNAFORM for the network shown in fig. 9(a).

b) Find the voltage across the capacitor for the network shown in fig. 9 (b) by LAPLACE **6** TRANSFORM. Assume the initial voltage across the capacitor is 2V. At t = 0, switch -k is closed.

OR

10. a) Find 'i(t)' for the network shown in 'fig. 10(a)' if switch - k is in position-A till steady state is reached and is shifted to position - B at t = 0.

b) Find 'v(t)' for the periodic waveform shown in 'fig 10(b)'.

11. a) Find voltage transfer function, $G_{12}(s) = \frac{V_2(s)}{V_1(s)}$ for the network shown in fig. 11 (a).

b) Draw 'POLE-ZERO' diagram of the given function and find i(t) from the 'POLE-ZERO' diagram.

$$I(S) = \frac{10S}{(S+1)(S^2 + 2S + 4)}$$

OR

12. a) Find short circuit parameters for the network shown in fig. 12 (a).

b) Derive reciprocity condition in terms of transmission parameters.

6

6

7

6

7
