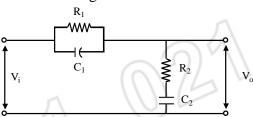
http://www.rtmnuonline.com

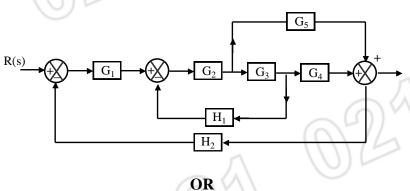
B.E. (Electronics Engineering / Elect. Telecommunication / Elect. Communication Engineering)
Sixth Semester (C.B.S.)

Control System Engineering

P. Pages: 3
Time: Three Hours

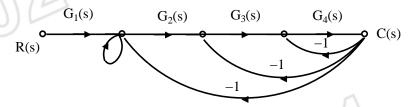

NJR/KS/18/4520/4525

Max. Marks: 80


6

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Diagrams and chemical equations should be given whenever necessary.
- 11. Illustrate your answers whenever necessary with the help of neat sketches.
- **1.** a) Find the transfer function of the circuit given.



b) Find $\frac{C(s)}{R(s)}$ using block reduction technique for the block diagram shown in fig.

2. a) What is the effect of a feedback on control system sensitivity.

b) Using Mason's gain formula, find $\frac{C(s)}{R(s)}$ for the system shown in fig.

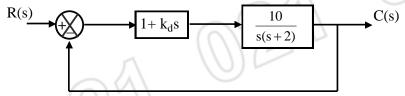
NJR/KS/18/4520/4525 1 P.T.O

3. a) A unity feedback system has forward path

T.F.
$$G(s) = \frac{K(2s+1)}{s(4s+1)(s+1)^2}$$

- i) State type & order of the system.
- ii) It is desired that steady state error for anilp r(t)=1+t should be equal to actress than 1. find minimum value of K.
- b) Define.
 - 1) Delay time.
 - 3) Peak time
 - 5) Settling time
 - 7) Time response.

- 2) Rise time
- 4) Deak overshoot.
- 6) Steady state error.


6

6

14

4

- OR
- **4.** a) Derive the time response of second order underdamped system to unit step input.
 - b) For the system shown,
 - i) Determine the derivative constant kd so that $\xi = 0.6$.
 - ii) Find % MP, settling time & number of oscillations before settling setting time & time required to reach over shoot & first under shoot sketch approximate time response.

- **5.** a) Define stability & its types.
 - b) State Hurwitz's stability criteria & what are its limitation.
 - c) The open loop transfer function of feedback control system is given by

$$G(s) \cdot H(s) = \frac{K}{s(s+4)(s^2+2s+1)}$$
.

using Routh criterion, determine the range of 'K' for which the system will be stable.

OR

6. The characteristics equation of a unity feedback system is given by

$$F(s) = s^3 + 4s^2 + [8+k]s + 3K = 0$$

Draw the root locus for K = 0 to ∞ . Determine the value of K for a damping ratio of 0.5.

- 7. a) Explain the forms related with Bode plot.
 - 1) Gain margin.

NJR/KS/18/4520/4525

- 2) Phase Margin.
- 3) Gain crossover frequency.
- 4) Phase crossover frequency.
- b) Draw the Bode plot of a system with open loop transfer function:-

$$G(s)H(s) = \frac{10(s+3)}{s(s+1)(s+2)}.$$

OR

- 8. a) Given: $G(s)H(s) = \frac{12}{s(s+1)(s+2)}$ Draw the polar plot & hence determine phase margin & gain Margine.
 - 1

6

b) State & explain Nyquist criterion.

electric RC network Realization.

9.

- Write the transfer function of a log-lead compensator. Draw its pole zero plot, bode plot & 7
- b) What is the need for compensation? Explain in brief the selection process for type of compensator for a particular system.

OR

10. a) Write short notes on Lead compensator.

b) Explain transducers in brief.

- 6
- **11.** a) Determine the system transfer function using the following state equations:

_

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} \mathbf{U}$$
$$\mathbf{y} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}.$$

b) The closed loop transfer function of the system is given below:

$$\frac{C(s)}{R(s)} = \frac{24}{(s+1)(s+2)(s+3)}$$

Derive tow different state models for the system.

OR

12. a) Transfer function of a system is defined by

$$\frac{y(s)}{v(s)} = \frac{s^2 + 2s + 3}{s^3 + 5s^2 + 4s}.$$

- Obtain canonical state space model & draw its block diagram representation.
- b) "Transfer function is unique & state variable is not unique" Justify the statement.

c) Also define

3

- 1) State variable
- 2) State space
- 3) State vector
