Elective - III : CMOS VLSI Design

P. Pages : 2

Time : Three Hours

**0 7 0 4 *

Max. Marks : 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 11. Use of non programmable calculator is permitted.
- **1.** a) Explain the operation of NMOS enhancement transistor.

Ĺ

b) Explain the following terms:

6

- i) Body effect
- ii) Channel length modulation
- iii) Drain punch through

OR

2. a) Derive the basic DC equations of MOS transistor in three regions of operation.

6

- b) Calculate the threshold voltage V_{TO} at V_{SB} = 0 for a polysilicon gate n channel MOS transistor with following parameters: Substrate doping density N_A = 10^{16} / cm³, polysilicon gate doping density N_D = 2×10^{20} / cm³, Gate oxide thickness t_{OX} = $500A^o$, oxide interface fixed charge density N_{OX} = 4×10^{10} / cm².
- 3. Explain the five regions of operation of CMOS inverter DC transfer characteristics. Hence derive the expressions for the same.

DR

4. a) Consider a CMOS inverter circuit with the following parameters :

8

$$V_{DD} = 3.3 \, \text{V}$$
, $V_{to,n} = 0.6 \, \text{V}$, $V_{to,p} = -0.7 \, \text{V}$, $K_n = 200 \, \mu \text{A} / V^2$, $K_p = 80 \, \mu \, \text{A} / V^2$
Calculate the noise margins of the circuit. The CMOS inverter being considered here has

Calculate the noise margins of the circuit. The CMOS inverter being considered here has KR = 2.5 and $V_{to,n} \neq |V_{to,p}|$.

b) Design 2: 1 MUX and 4: 1 MUX using CMOS Transmission gates.

6

NJR/KS/18/4708 1 P.T.O

5.		Implement the following functions using CMOS logic gates -	13
(i) $Z = \overline{AB} + A\overline{B}$	
	16	ii) $Z = \overline{(ABC) + D}$,
		iii) $Z = A (Buffer)$	
		iv) $Z = \overline{(A \cdot B) + (C \cdot D)}$	
		OR	
6.	a)	Explain the operation of CMOS positive edge triggered D Flip Flop.	7
	b)	Explain the operation of DRAM cell.	6
7.	a)	Derive the expression for static, dynamic and short circuit power dissipation and hence total power dissipation.	9
Δ	b)	Explain capacitance estimation of MOS device indicating accumulation, depletion and inversion region.	5
~ \		OR	
8.	a)	Explain switching characteristics of CMOS inverter and hence derive expression for rise time, fall time and delay time of a CMOS inverter.	9
	b)	Write a short note on charge sharing.	5
9.	a)	Draw stick diagram of	7
		i) CMOS inverter	
		ii) Two input NAND gate	
	b)	Explain the phenomenon of Latch up in CMOS. How it is avoided.	6
		OR	5
10.		Write short notes on any three.	13
		i) Clocking Strategies.	
		ii) Layout Design Rules.	
		iii) Domino logic.	
		iv) Transistor sizing.	
11.	a)	State and explain different types of faults.	7
	b)	What is DFT? Explain in detail.	6
		OR	
12.	_		13
		i) BIST	
(4))) [\	ii) JTAG	
		iii) Boundary Scan Technique.	