Faculty of Engineering \& Technology

Third Semester B.E. (Information Technology)/
C.E.(C.B.S.) Examination APPLIED MATHEMATICS-III

Time: Three Hours] [Maximum Marks : 80 INSTRUCTIONS TO CANDIDATES
(1) Solve SIX questions as follows :

Question No. 1 OR Question No. 2
Question No. 3 OR Question No. 4
Question No. 5 OR Question No. 6
Question No. 7 OR Question No. 8
Question No. 9 OR Question No. 10
Question No. 11 OR Question No. 12.
(2) Use of non-programmable calculator is permitted.
(3) Assume suitable data wherever necessary.
(4) Illustrate your answers wherever necessary with the help of neat sketches.
(b) Let X be the random variable giving the number of heads in three tosses of a fair coin. Find :
(i) Probability function $\mathrm{f}(\mathrm{x})$.
(ii) Distribution function $\mathrm{F}(\mathrm{x})$.
(iii) Also draw the graphs of $f(x)$ and $F(x)$. 7
11. (a) Find mathematical expectation of discrete random variables X whose probability function is
$f(x)=(1 / 2)^{x}, x=1,2,3, \ldots \ldots \ldots$.
6
(b) Find first four moments about :
(i) Origin and
(ii) Mean for the probability distribution :

$$
f(x)= \begin{cases}\frac{4 x\left(9-x^{2}\right)}{81} & 0 \leq x \leq 3 \tag{7}\\ 0 & \text { otherwise }\end{cases}
$$

OR
12. (a) If 3% the electric bulbs manufactured by a company are defective, find the probability that in a sample of 100 bulbs (i) between 1 and 3 (ii) exactly 2 (iii) at least 2 bulbs will be defective.
4. Find the Fourier transform of $f(x)=\left\{\begin{array}{cl}1-x^{2}, & |x| \leq 1 \\ 0 & |x|>1\end{array}\right.$
and hence find $\int_{0}^{\infty}\left(\frac{\sin x-x \cos x}{x^{3}}\right) \cos \left(\frac{x}{2}\right) d x$.
5. (a) Find z-transform of $\sin n \theta$ and $\cos 1 \theta$. 7
(b) Find inverse z-transform of $\frac{z^{2}+z}{(z-1)\left(z^{2}+1\right)}$.

OR

6. (a) If $\mathrm{z}\{\mathrm{f}(\mathrm{n})\}=\overline{\mathrm{f}}(\mathrm{z})$ then show that:

$$
\mathrm{z}\left\{\frac{\mathrm{f}(\mathrm{n})}{\mathrm{n}+\mathrm{k}}\right\}=\mathrm{z} \int_{\mathrm{z}}^{\infty} \frac{\overline{\mathrm{f}}(\mathrm{z})}{\mathrm{z}^{\mathrm{k}+1}} \mathrm{dz} .
$$

Hence find $\mathrm{z}\left[\frac{1}{\mathrm{n}+1}\right]$.
(b) Solve by z-transform :

$$
\mathrm{y}_{\mathrm{n}+2}+\mathrm{y}_{\mathrm{n}}=2, \quad \mathrm{y}_{0}=\mathrm{y}_{1}=0
$$

7. (a) Find the modal matrix of :

$$
A=\left[\begin{array}{ccc}
8 & -6 & 2 \tag{6}\\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]
$$

(b) Solve $\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+\mathrm{x}=0$; given $\mathrm{x}(0)=0, \mathrm{x}^{\prime}(0)=1$ by matrix method. 6
(c) Find whether the vectors given below are linearly dependent or not. Also find the relation between them if possible :
$X_{1}=[1,0,2,1], X_{2}=[3,1,2,1], X_{3}=[4,6,2,-4]$, $X_{4}=[-6,0,-3,-4]$.

OR

8. (a) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$ and hence find A^{-1}. 6
(b) Use Sylvester's theorem to show that $2 \sin A=\{\sin 2\} A$ where $A=\left[\begin{array}{cc}-1 & 3 \\ 1 & 1\end{array}\right]$ 6
(c) If $\xi=\mathrm{x} \cos \alpha-\mathrm{y} \sin \alpha, \eta=\mathrm{x} \sin \alpha+\mathrm{y} \cos \alpha$ then prove that the transformation is orthogonal and hence write the inverse transformation. 6
9. (a) Can the function

$$
f(x)=\left\{\begin{array}{lr}
C\left(1-x^{2}\right) & 0 \leq x \leq 1 \tag{7}\\
0 & \text { otherwise }
\end{array}\right.
$$

be a distribution function ? Explain.
(b) The joint probability function of two discrete random variables X and Y is given by :

$$
f(x, y)= \begin{cases}C x y & x=1,2,3 \text { and } y=1,2,3 \\ 0 & \text { otherwise }\end{cases}
$$

Find :
(i) $\mathrm{P}(1 \leq \mathrm{X} \leq 2, \mathrm{Y} \leq 3)$.
(ii) Marginal probability function of X and Y .
(iii) Determine whether X and Y are independent.

7

OR

10. (a) Let $f(x, y)= \begin{cases}e^{-(x+y)} & x \geq 0, y \geq 0 \\ 0 & \text { otherwise }\end{cases}$
be the joint density function of X and Y . Find
(i) Marginal density function of X and Y .
(ii) Conditional density function of X given Y .
11. (a) $\operatorname{If} L[f(t)]=\bar{f}(\mathrm{~s})$ then show that $L\left[\frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}}\right]=\int_{\mathrm{s}}^{\infty} \overline{\mathrm{f}}(\mathrm{s}) \mathrm{ds}$.

Hence find $\int_{0}^{\infty} \mathrm{e}^{-\mathrm{t}}\left[\frac{\cos 6 \mathrm{t}-\cos 4 \mathrm{t}}{\mathrm{t}}\right] \mathrm{dt}$. $\quad 7$
(b) Using convolution theorem, find $\mathrm{L}^{-1}\left[\frac{\mathrm{~s}^{2}}{\left(\mathrm{~s}^{2}+\mathrm{a}^{2}\right)^{2}}\right]$.

OR

2. (a) Solve $\frac{d^{2} y}{\mathrm{dt}^{2}}+y=u(t-\pi)-u(t-2 \pi)$ given that $y(0)=y(0)=0$. 7
(b) Find the Laplace transform of the periodic function

$$
f(t)=\frac{k t}{T} \text { for } 0<t<T \text { and } f(t+T)=f(t)
$$

3. If $f(x)=e^{-\beta x}$, using Fourier integral show that

$$
\frac{\mathrm{p}}{2} \mathrm{e}^{-\beta \mathrm{x}}=\int_{0}^{\infty} \frac{? \sin ? \mathrm{x}}{\beta^{2}+?^{2}} \mathrm{~d} \text { ? for } \beta>0
$$

OR

