NTK/KW/15/7330/7335

Faculty of Engineering & Technology

Third Semester B.E. (Information Technology)/ C.E.(C.B.S.) Examination

APPLIED MATHEMATICS—III

Time: Three Hours] [Maximum Marks: 80

INSTRUCTIONS TO CANDIDATES

- (1) Solve SIX questions as follows:
 - Question No. 1 OR Question No. 2
 - Question No. 3 OR Question No. 4
 - Question No. 5 OR Question No. 6
 - Question No. 7 OR Question No. 8
 - Question No. 9 OR Question No. 10
 - Question No. 11 OR Question No. 12.
- (2) Use of non-programmable calculator is permitted.
- (3) Assume suitable data wherever necessary.
- (4) Illustrate your answers wherever necessary with the help of neat sketches.

www.rtmnuonline.com

- (b) Let X be the random variable giving the number of heads in three tosses of a fair coin. Find:
 - (i) Probability function f(x).
 - (ii) Distribution function F(x).
 - (iii) Also draw the graphs of f(x) and F(x). 7
- 11. (a) Find mathematical expectation of discrete random variables X whose probability function is $f(x) = (1/2)^x$, $x = 1, 2, 3, \dots$ 6
 - (b) Find first four moments about :
 - (i) Origin and
 - (ii) Mean for the probability distribution:

$$f(x) = \begin{cases} \frac{4x(9-x^2)}{81} & 0 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

OR

12. (a) If 3% the electric bulbs manufactured by a company are defective, find the probability that in a sample of 100 bulbs (i) between 1 and 3 (ii) exactly 2 (iii) at least 2 bulbs will be defective.

6

MVM—47069 6 (Contd.)

4. Find the Fourier transform of $f(x) = \begin{cases} 1-x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$

and hence find
$$\int_0^\infty \left(\frac{\sin x - x \cos x}{x^3} \right) \cos \left(\frac{x}{2} \right) dx$$
.

5. (a) Find z-transform of $\sin n\theta$ and $\cos n\theta$. 7

(b) Find inverse z-transform of $\frac{z^2 + z}{(z-1)(z^2+1)}$. 7

OR

6. (a) If $z\{f(n)\} = \overline{f}(z)$ then show that :

$$z \left\{ \frac{f(n)}{n+k} \right\} = z^k \int_z^{\infty} \frac{\overline{f}(z)}{z^{k+1}} dz.$$

Hence find
$$z \left[\frac{1}{n+1} \right]$$
.

(b) Solve by z-transform:

$$y_{n+2} + y_n = 2, \quad y_0 = y_1 = 0.$$

MVM—47069 3 (Contd.)

7

7. (a) Find the modal matrix of:

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

- (b) Solve $\frac{d^2x}{dt^2} + x = 0$; given x(0) = 0, x'(0) = 1 by matrix method.
- (c) Find whether the vectors given below are linearly dependent or not. Also find the relation between them if possible :

$$X_1 = [1, 0, 2, 1], X_2 = [3, 1, 2, 1], X_3 = [4, 6, 2, -4],$$

 $X_4 = [-6, 0, -3, -4].$

OR

8. (a) Verify Cayley-Hamilton theorem for the matrix

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix} \text{ and hence find } A - 1$$
 6

(b) Use Sylvester's theorem to show that $2 \sin A = \{\sin 2\}$ A where $A = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix}$.

MVM—47069 4 (Contd.)

- (c) If $\xi = x \cos \alpha y \sin \alpha$, $\eta = x \sin \alpha + y \cos \alpha$ then prove that the transformation is orthogonal and hence write the inverse transformation. 6
- 9. (a) Can the function

$$f(x) = \begin{cases} C(1-x^2) & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

be a distribution function? Explain.

(b) The joint probability function of two discrete random variables X and Y is given by:

$$f(x, y) = \begin{cases} C & xy \quad x = 1, 2, 3 \text{ and } y = 1, 2, 3 \\ 0 & \text{otherwise} \end{cases}$$

Find:

- (i) $P(1 \le X \le 2, Y \le 3)$.
- (ii) Marginal probability function of X and Y.
- (iii) Determine whether X and Y are independent.

OR

10. (a) Let
$$f(x, y) = \begin{cases} e^{-(x+y)} & x \ge 0, y \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

be the joint density function of X and Y. Find

- (i) Marginal density function of X and Y.
- (ii) Conditional density function of X given Y.

7

7

MVM—47069 5 (Contd.)

www.rtmnuonline.com

- 1. (a) If $L[f(t)] = \overline{f}(s)$ then show that $L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} \overline{f}(s) ds$.
 - Hence find $\int_{0}^{\infty} e^{-t} \left[\frac{\cos 6t \cos 4t}{t} \right] dt.$
 - (b) Using convolution theorem, find $L^1 \left[\frac{s^2}{\left(s^2 + a^2\right)^2} \right]$.

OR

- 2. (a) Solve $\frac{d^2y}{dt^2} + y = u(t \pi) u(t 2\pi)$ given that y(0) = y(0) = 0.
 - (b) Find the Laplace transform of the periodic function $f(t) = \frac{kt}{T} \text{ for } 0 < t < T \text{ and } f(t+T) = f(t). \quad 7$
- 3. If $f(x) = e^{-\beta x}$, using Fourier integral show that

$$\frac{p}{2}e^{-\beta x} = \int_0^\infty \frac{? \sin ?x}{\beta^2 + ?^2} d?, \text{ for } \beta > 0.$$

OR

(b) Let X and Y have joint density function

$$f(x, y) = \begin{cases} x + y & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Find conditional expectation and variance of Y given X. 7

MVM-47069

2

(Contd.)

MVM-47069

7

3450