B.E. (Mechanical Engineering) Sixth Semester (C.B.S.)

Control System Engineering

P. Pages: 4 NIR/KW/18/3480

Time: Three Hours

* 1 2 8 4 *

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 11. Use of non programmable calculator is permitted.
- 1. a) Compare open loop and close loop control system with example.

(b) 8

6

7

Determine transfer function $\frac{X_1(s)}{F(s)}$ of translational mechanical system show in fig. 1 (b).

Fig. 1. b

OR

2. a) Determine Transfer function of an electrical network shown in fig. 2-a.

Fig. 2 - a

NIR/KW/18/3480 1 P.T.O

b) Determine transfer function of Rotational Geared mechanical system shown in fig. 2 – b T.F. = $\frac{\theta_2(s)}{T(s)}$ = ?

- 3. For a system represented by block diagram as shown in fig. 3. Determine <u>transfer function</u> using.
 - i) Block diagram Algebra and
 - ii) Mason's gain formula (SFG)

OR

4. a) Convert the electrical network shown in fig. 4a in to equivalent signal flow graph and determine T.F. $V_0(s)/V_i(s)$ using Mason's gain formula.

b) Determine T.F. $\frac{C(s)}{R(s)}$ of signal flow graph shown in fig. 4 b.

7

7

5. a) Determine steady – state errors for inputs of $5\mu(t)$, $5t\mu(t)$ and $5t^2\mu(t)$ given to system shown in fig. 5 a. The function $\mu(t)$ is unit step.

b) Derive expression for error coefficients and steady state error for step, ramp and parabolic inputs given to type <u>one</u> system.

OR

6. a) For rotational mechanical system shown in fig. 6 – a. Determine 'J' and 'D' so that system yield 20% overshoot and settling time is 2 seconds. For step input of torque T(t).

b) Experimental unit step response of 2^{nd} order system with zero initial condition is shown in fig. 5 - b. Determine natural frequency, damping ratio and other transient specifications.

7. a) Explain stable, unstable and marginally stable system with neat sketch.

6 8

7

6

5

b) For the system having characteristic eqⁿ as $s^5 + s^4 + 2s^3 + 2s^2 + s + 1 = 0$ comment on stability using Routh's array.

OR

8. Sketch a Root Locus plot for system having

14

$$G(s) \cdot H(s) = \frac{K(s+4)(s+5)}{(s+3)(s+1)}$$

9. Draw Bode plot for the system having

G(s)·H(s) =
$$\frac{K}{s(1+\frac{s}{8})(1+\frac{s}{40})}$$

Determine value of gain K for

- Gain margin = 20 db
- ii) Phase margin = 30° .

OR

13

8

5

7

6

10. Sketch polar plot for system having a)

G(s)·H(s) =
$$\frac{5}{s(s+6)(s+8)(s+4)}$$

Obtain open loop T.F. using inverse Bode plot technique for gain plot shown in fig. 10 b. b)

11. a) Construct a state space model for system having closed loop T.F.

$$\frac{Y(s)}{\mu(s)} = \frac{10(s+4)}{s(s+1)(s+3)}$$

Find Transfer function of the following state model. b)

$$\begin{bmatrix} \dot{\mathbf{X}}_1 \\ \dot{\mathbf{X}}_2 \\ \dot{\mathbf{X}}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -4 & -7 \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mu(t)$$

and
$$y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

OR

12. Write short notes on the following:

- 13
- i) Phase Lead – Lag compensation.
- ii) Effect of location of poles of second order system for under damped, overdamped and critically damp response.
- Controllability and observability. iii)
