RCK/KW/13/3144/3570

Faculty of Engineering & Technology

Seventh Semester B.E. (Mech.)/ Seventh Semester

B.E.P.T. (Mech.) Examination

ADVANCED I.C. ENGINES

(Elective I)

Sections & B

Time-Three Hours]

[Maximum Marks-80

www.rtmnuonline.com

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Answer THREE questions from Section A and THREE questions from Section B.
- (3) Assume suitable data wherever necessary.
- (4) Illustrate your answers wherever necessary with the help of neat sketches.
- (5) Use of Slide rule, Logarithmic tables, Steam tables, Mollier's chart, Drawing instruments Thermodynamic tables for moist air, Psychrometric charts and Refrigeration charts is permitted.

SECTION_A

- 1. (a) Explain SI Engine operating cycle on P-V diagram.

 Discuss the different losses that occur and depict them on the P-V diagram.
 - (b) Explain Dry Sump lubrication System, with neat sketch.
- (a) Explain the various factors affecting Mechanical friction.

MHB—42606 1 12) T

A74

Contd.

- (b) How is the circulation accomplished in a thermosyphon system? What are the drawbacks of this system?
- (a) With the help of a neat sketch explain the working principle of a simple carbourettor.
 - (b) What is meant by abnormal combustion in SI Engine?
 Explain the phenomenon of knock in SI Engine?
- 4. (a) The following data is related to a petrol engine:

Petrol consumed per hour = 7.2 kg.

The specific gravity of the fuel = 0.75

The temperature of air = 27°C

The air fuel ratio = 1:15

The diameter of choke tube = 24 mm

The height of top of the jet above the petrol level = 4.2 mm.

= 0.0042 m in the float chamber

The co-efficient of discharge for air = 0.8

The co-efficient of discharge of fuel = 0.7

Atmospheric pressure = 1.013 bar

Calculate the diameter of the fuel jet of a simple carbourettor.

- b) Explain MPFI with neat sketch.
- (a) Mention the various important considerations of good ignition system with neat sketch. Explain battery ignition system.

2

MHB-42606

A75

Con≰d.

www.rtmnuonline.com

	(b)	Explain super cha SI Engine.	arging and t	urbo charging in	case of	
h	(c)	Explain use of a	lcohol as fo	el in I.C. Engin	e 4	
	(0)	_		er in i.e. raigin	. 4	
SECTION-B						
6.	(a)	Explain process a	splain process and various stages of combustion in			
		C.I. Engine.		ن ۾	7	
	(b)	What is delay peri	od? Explain	various factors a	effecting	
		delay period.		JOH.	- 6	
7.	(a)	Explain EGR an	d catalytic c	onverter.	7	
	(b)	Explain Nox For	mation in C	A. Engine.	6	
8.	(a) A Morse test on a 12 cylinder, two strok				stroke	
		compression-Ignition engine of bore 40 cm and stroke				
		50 cm running at 2	200 rpm gave	the following re	adings:	
	-	Condition		Brake	e Load	
				(N	ewton)	
		All firing			2040	
		1st Cylinder			1830	
	.0	2 nd Cylinder			1850	
NA S	din	3 rd Cylinder			1850	
45		4 th Cylinder			1830	
1		5 th Cylinder		•	1840	
		6 th Cylinder			1855	
		7 th Cylinder			1835	
		8th Cylinder			1860	
		9 th Cylinder			1820	
		10 th Cylinder			1840	
мнв	—426	•	3	A76	Contd.	

	11 th Cylinder	1850				
	12 th Cylinder	1830				
	All firing	2060				
	The output is found from the dynamometer	using				
	the relation.					
	WN					
	$b_p = \frac{W N}{180}$. 3				
	where W the brake load is in Newton and the	speed;				
	Note in many coloniate ID mechanical efficient	cy and				
	bmep of the engine. (b) Explain Free piston engine.	9				
	(b) Explain Free piston engine.	5				
).	In a test of an oil engine under full load conditi	on the				
•	following results were obtained:					
	IP = 33 kW					
	Brake power = 27 kW					
	Fuel used = 8 kg/h					
	Rate of flow of water through gas calor	imeter				
	= 12 kg/min.					
	Cooling water flow rate = 7 kg/min.					
	Calorific value of fuel = 43 MJ/kg.					
	Inlet temp of cooling water = 15°C					
	Quelet terms of cooling water = 75°C					
	inlet temp of water to exhaust gas calorimeter = 15°C.					
Outlet temp of the water to exhaust gas						
	calorimeter = 55°C.	-				
	Final temp of exhaust gases = 80°C.					
	Room temperature = 17°C.					
	Air fuel ratio on mass basis = 20					
LAT!	B-42606 4 A77	Contd.				
WIH	D-42000					

Mean specific heat of exhaust gas = 1 KJ/kg K. Specific heat of water = 4.18 J/kg K. Draw up a heat balance sheet and estimate the thermal and mechanical efficiencies. 13

- 10. Write short notes on (Any THREE):
 - Scavenging.
 - Adiabatic Engine.
 - (3) Effect of engine modification on pollutants from SI (4) Combustion chamber of CI engine.
 - 13

MHB-42606

5

3050