B.E. Fifth Semester (Power Engineering) (C.B.S.)

Control Systems Engineering

P. Pages: 3 NKT/KS/17/7367

Time : Three Hours

Max. Marks : 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Assume suitable data whenever necessary.
- 9. Use of non programmable calculator is permitted.
- 1. a) Explain open loop and close loop control system in detail.

6

8

5

7

b) Explain automobile power steering control and speed control system in detail.

OR

2. a) Find Transfer Function

b) Find T. F. $\frac{\theta_2(Cs)}{T(s)}$

3. a) Find $\frac{C(s)}{R(s)}$ by using block reduction technique.

b) Find T. F. by using Mason's Gain Formula.

OR

4. a) Define the following terms with respect to SFG.

5

6

- i) Forward path gain.
- ii) Self loop.
- iii) Non-touching loop.
- iv) Signal flow graph.
- v) Masson's gain formula.
- b) Find T. F. $\frac{\text{Eo}(s)}{\text{Ei}(s)}$

- 5. a) What is PID controller? Explain the classification of industrial controller in detail.
- 6

8

b) Derive the relationship between steady state error for step, ramp and parabolic input and error constant.

OR

6. a) A unity feedback control system has forward path T. F. $G(s) = \frac{k}{S(S+25)}$

8

- i) Find k for $\xi = 0.6$.
- ii) Find rise time, peak time peak overshoot, setting time.
- iii) Steady state error and number of oscillation.
- iv) Draw response curve with all specification.
- The given system : $G(s) = \frac{200}{S(S+8)}$; H(s) = 1 Find steady state error for r(t) = 2t Find value of "k" to reduce the error by 5%.

- 7. a) Explain Routh-Hurwitz criterion and its application for determination of stability.
- 6

b) Examine stability of (Routh-Hurwitz) R. H. Criteria $S^6 + 3S^5 + 4S^4 + 6S^3 + 5S^2 + 3S + 2 = 0$.

7

8

OR

- 8. a) Find " K_{mar} " for G(s) $H(s) = \frac{K(S+2)}{S^2(S+5)(S+7)}$ Find the "Range of K".
 - b) The O. L. T. F. of the given system is -G(s) $H(s) = \frac{0.4S+1}{S(S+0.6)}$ Find all domain specification and draw response curve.
- 9. Draw polar plot and determine gain margin, phase margin. Also comment on stability. $G(s) \ H(s) = \frac{100}{S^2 (S+4) (S+24)} \, .$

OR

- 10. Draw root locus G(s) $H(s) = \frac{k}{S(S+1)(S+4)(S+6)}$
- 11. a) Explain transportation lag and design lag lead compensation in detail. 5
 - b) Check for given system that it is observable and controllable or not.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \mu \text{ and}$$

$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}$$

OR

- 12. a) Express the given differential equation in state space model form $S^{3}y + S^{2}6y + S^{11}y + 6y = 6u$
 - b) Explain transfer function for DC field motor in detail. 6
