RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR

SHRI MATHURADAS MOHOTA COLLEGE OF SCIENCE, NAGPUR

Bachelor of Science (B.Sc.) Semester-1

MATHEMATICS Paper - I M1 -Elementry Mathematics

Time Three Hourst

[Full Marks

N.B.:- (1) All questions are compulsory and carry equal marks

(2) Questions 1 to 4 have an alternative. Solve each question in full or its alternative in full

(3) Question No. 5 has no alternative and contains eight sub-questions

UNIT-1

Q I (A) State and prove De'Moivre's theorem for (i) Positive integer, (ii) Negative integer. (6

(B) Prove that
$$(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1} \cos\left(\frac{n\pi}{4}\right)$$
, if n is a positive integer (a)

OR

(C) Solve the equations
$$z^2 + 1 = \sqrt{3i}$$
.

(D) Prove that if
$$\tanh w = z$$
, then $w = \tanh^{-1} z = \frac{1}{2} \log \left(\frac{1+z}{1-z} \right)$. (6)

<u>UNIT-11</u>

Q.2 (A) Find the non-singular matrices P & Q so that PAQ is in normal form for the

$$\text{Matrix A} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix} \quad . \tag{6}$$

(B) Show that the equations: x + 2y - z = 3, 3x - y + 2z = 1, 2x - 2y + 3z = 2,

$$x - y + z = -1$$
 are consistent and solve them

OR

(C) Find the eigen values and associated eigen vectors for the matrix

$$\begin{bmatrix} 5 & 4 \\ 19 & 2 \end{bmatrix} \tag{6}$$

(D) Verify Cayley - Hamilton theorem for the matrix

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & -1 & 1 \\ 7 & 1 & -1 \end{bmatrix} \text{ And hence compute } A^{-1}$$
 (6)

UNIT-III

Q. 3 (A) Find the condition that the roots of the equation $x^3 - px^2 + qx - r = 0$ raw in A.P.

(B) Solve the reciprocal equation $x^4 - 10x^3 + 26x^2 - 10x + 1 = 0$ (6)(C) Solve the equation $x^3 - 15x = 126$, by Cardan's Method (6)(D) Solve $x^4 - 3x^3 - 42x - 40 = 0$ by Ferran's Method UNIT-IV Q. 4 (A) Let a and b be integers, not both zero. Then prove that there exists integers x and y (6)Such that gcd(a, b) = xa + yb. (B) For positive integers a and b prove that $gcd(a, b) \cdot lcm(a, b) = a \cdot b$ (6) OR (6)(C) Solve the linear Diophantine equation 172x + 20y = 1000(6)(D) Solve the system $7x + 3y \equiv 10 \pmod{16}$ and $2x + 5y \equiv 9 \pmod{16}$ (1^1_2) Q.5 (A) Prove that $cosh^2z - sinh^2z = 1$ (1^{1}_{2}) (B) Find all values of In (-3) (C) Under what condition, the rank of the matrix $A = \begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \end{bmatrix}$ is 3 (1^{1}_{2}) (D) Investigate the values of λ and μ , so that the equations x + y + z = 6x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ have no solution (1^{1}_{2}) (E) Find the least possible number of imaginary roots of the equation $x^9 - x^5 + x^4 + x^2 + 1 = 0$ (1^{1}_{2}) (F) Form the equation whose roots are $1.1 + i\sqrt{3}$ (1^{1}_{2}) (1^{1}_{2}) (G) Prove that alb and bla imply $a = \pm b$ (1^{1}_{2}) (H) Find gcd (306,657)

https://www.rtmnuonline.com

and hence solve $x^3 - 12x^2 + 39x - 28 = 0$

(6)

(6)