NKT/KS/17/5302

Bachelor of Science (B.Sc. I.T.) Semester-II (C.B.S.) Examination FUNDAMENTALS OF DIGITAL ELECTRONICS Paper-I

Time : Three Hours]
[Maximum Marks : 50
Note :-(1) ALL questions are compulsory.
(2) Draw neat labelled diagrams wherever necessary.

EITHER

1. (a) Explain double dabble method of converting decimal number into its binary equivalent.
(b) What are binary codes ? Explain gray code with suitable example.

OR

(c) Do as directed :
(i) $(1101)_{10}=()_{2}$
(ii) $(234)_{7}=()_{10}$.5
(d) Explain 2's complement method of number representation. 5

EITHER

2. (a) Construct AND, OR and NOR gates using only NANO gates. 5
(b) State and prove De-Morgan's theorem. 5

OR
(c) What is a k-map ? How does it help in reducing the equations in SOP form ? 5
(d) Explain Quine McClusky method. 5

EITHER

3. (a) What is a multiplexer ? Explain the working of 4:1 multiplexer with circuit diagram.
(b) Explain the working of a 3-bit asynchronous counter. 5

OR
(c) What is full adder ? Explain the working of a full adder circuit with neat diagram. 5
(d) Explain the working of JKMSFF with circuit diagram. 5

EITHER

4. (a) Explain ROM and EPROM. 5
(b) Explain the organization of a hard disk. 5

OR
(c) Write a note on any two I/O devices. 5
(d) What is cache memory ? Explain. 5
5. Attempt all :
(a) What is an ASCII code ? Explain. $2 \frac{1122}{2}$
(b) Why NOR gates is called as universal building blocks ? Explain. 2½
(c) What is a demultiplexer ? Explain. $2 \frac{1122}{2}$
(d) What is RAM ? Explain. $2 \frac{1 ⁄ 2}{2}$

