B.Sc. (Semester-II) Examination MATHEMATICS

(M3-Geometry, Differential & Difference Equations)

Compulsory Paper—I

Time—Three Hours

[Maximum Marks—60]

- N.B. :- (1) Solve all the FIVE questions.
 - (2) All questions carry equal marks.
 - (3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT-I

 (A) Obtain the equation of the sphere circumscribing the tetrahedron whose faces are:

$$x = 0, y = 0, z = 0, \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

(B) Prove that the circles:

$$x^2 + y^2 + z^2 - 2x + 3y + 4z - 5 = 0$$

$$5y + 6z + 1 = 0$$
;

$$x^2 + y^2 + z^2 - 3x - 4y + 5z - 6 = 0$$

$$x + 2y - 7z = 0;$$

Lie on the same sphere and find it's equation. 6

OR

MVM-44541

1

Contd

- (C) Find the equation of the right effection whose vertex is the origin and whose axis is the line x/l = y/m = z/n and the semivertical angle θ .
- (D) Find the equation of the right circular cylinder of radius 2, whose axis passes through the point (1, 2, 3) and has direction cosines proportional to (2, -3, 6).

UNIT-II

 (A) Prove that the necessary and sufficient condition for the ordinary differential equation:

$$M(x, y) dx + N(x, y) dy = 0$$

to be exact is:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \ .$$

(B) Solve the linear equation :

$$\left(x^2+1\right)\frac{dy}{dx}+2xy=\sqrt{\left(x^2+4\right)}.$$

OR

(C) Solve
$$4y^2p^2 + 2pxy(3x + 1) + 3x^3 = 0$$
,

where p = dy/dx.

6

6

MVM-44541

2

Contd.

(D) Solve $\frac{dy}{dx} + \frac{1}{x} \sin 2y = x^2 \cos^2 y$ by transforming to linear form.

UNIT-III

3. (A) Solve
$$(D^2 - 2D + 4) y = e^x \cos x$$
, where $D = \frac{d}{dx}$.

(B) Solve
$$x^2 \frac{d^2y}{dx^2} + 7x \frac{dy}{dx} + 5y = x^5$$
.

OR

- (C) Solve $xy^{(2)} (2x 1)y^{(1)} + (x 1)y = 0$ for which $y = e^x$ is an integral.
- (D) Solve $y^{(2)} 2y^{(1)} + y = x^2e^x$ by the method of variation of parameters.

UNIT-IV

4. (A) Solve

$$u_{x+2} - 7u_{x+1} + 12u_x = \cos x \text{ with } u_0 = 0 = u_1$$
. 6

(B) Solve
$$u_{x+2} - 5u_{x+1} + 6u_x = 5^x$$
.

OR

(C) Solve
$$u_{x+2} - 4u_x = 5.3^x$$
.

(D) Solve
$$u_{x+2} + u_y = \sin(x/2)$$
.

MVM-44541

3

Contd

www.rtmnuonline.com

Ouestion---V

5. (A) Show that the equation:

$$x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$$
 represents a sphere. 1½

- (B) If the axis of the right circular cylinder passes through origin with direction ratios (1, 2, 3), then find the equation of axis.
- (C) Solve $p = \log (px y)$, where $p = \frac{dy}{dx}$. 1½
- (D) Find the integrating factor of linear differential equation $\sin x \frac{dy}{dx} + y \cos x = 2 \sin^2 x \cos x.$ 1½
- (E) Reduce $x^2 \frac{d^2y}{dx^2} 8x \frac{dy}{dx} + 8y = \log x$ to the linear differential equation with constant coefficients. 1½
- (F) Find the particular integral of the equation $(1 D^2)$ y = x, where D = d/dx. $1\frac{1}{2}$
- (G) Form the difference equation corresponding to two parameter family $y = ax^2 bx$.
- (H) Solve $u_{x+2} 2u_{x+1} + u_x = 0$. 1½

French Commission Comm