Bachelor of Science (B.Sc.I.T.) Semester-III (C.B.S.) Examination
 STATISTICAL METHODS
 Paper-VI

Time : Three Hours]
[Maximum Marks : 50
Note :-(1) All questions are compulsory and carry equal marks.
(2) Assume suitable data wherever necessary.

EITHER

1. (a) How is census and sample investigation used in Statistics ? Explain.
(b) Define Statistics and explain its importance.

OR

(c) Define tabulation and give its characteristics and objects.
(d) Discuss the different sources for collecting primary data.

EITHER

2. (a) Define Geometric mean. Derive the formula $G=\operatorname{Antilog}\left(\frac{1}{N} \sum_{i=1}^{n} f_{i} \log x_{i}\right)$ for the geometric mean of frequency distribution :

$$
\begin{align*}
& \mathrm{x}: \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots, \mathrm{x}_{\mathrm{n}} \\
& \mathrm{f}: \mathrm{f}_{1}, \mathrm{f}_{2}, \ldots \ldots ., \mathrm{f}_{\mathrm{n}} . \tag{5}
\end{align*}
$$

(b) The distribution of 100 families according to their expenditure per week is given below :

Expenditure : $\begin{array}{llllll}0-10 & 10-20 & 20-30 & 30-40 & 40-50\end{array}$
Number of families : $14 \quad$? $\quad 27 \quad 15$
The median and mode of the distribution are 25 and 24 respectively. Calculate the missing frequencies.

OR

(c) What is frequency curve ? Explain its types.
(d) Calculate the mean for the following frequency distribution :

Class-interval:	$0-8$	$8-16$	$16-24$	$24-32$	$32-40$	$40-48$	
Frequency	$:$	8	7	16	24	15	7

EITHER

3. (a) What do you mean by dispersion ? Explain the measures of dispersion. 5
(b) What is Kurtosis ? Explain its importance.

OR
(c) Find the mean and standard deviation of the following series :

Expenditure	No. of students
Below Rs. 5	6
Below Rs. 10	16
Below Rs. 15	28
Below Rs. 20	38
Below Rs. 25	46

(d) Calculate the first four moments of the following distribution about the mean and hence find β_{1} and β_{2} :

x	$:$	0	1	2	3	4	5	6	7	8
f	$:$	1	8	28	56	70	56	28	8	1

EITHER

4. (a) Prove that the correlation coefficient is independent of change of origin and scale .
(b) Obtain the regression equation of Y on X for the following distribution :

$$
\begin{equation*}
f(x, y)=\frac{Y}{(1+x)^{4}} \exp \left(-\frac{Y}{1+x}\right) ; x, y \geq 0 \tag{5}
\end{equation*}
$$

OR
(c) Calculate the correlation coefficient between the heights of father (X) and of the sons (Y) from the following data :

X	$:$	65	66	67	68	69	70	71	67
Y	$:$	67	68	64	72	70	67	70	68

(d) What is linear regression? Explain with the help of Scatter Diagram.
5. Attempt all :
(a) Explain what precautions are to be taken while using secondary data.
(b) Define Harmonic Mean. Give its merits and demerits. $21 / 2$
(c) Give the characteristics for an ideal measure of dispersion. $21 / 2$
(d) If the lines of regression of Y on X and X on Y are respectively $a_{1} X+b_{1} Y+c_{1}=0$ and $\mathrm{a}_{2} \mathrm{X}+\mathrm{b}_{2} \mathrm{Y}+\mathrm{c}_{2}=0$, then prove that $\mathrm{a}_{1} \mathrm{~b}_{2} \leq \mathrm{a}_{2} \mathrm{~b}_{1}$.

