NKT/KS/17/5110

Bachelor of Science (B.Sc.) Semester—III (C.B.S.) Examination PHYSICS

(Sound Waves, Applied Acoustics, Ultrasonics And Power Supply)

Paper-I

Time: Three Hours]

[Maximum Marks: 50

- N.B.:—(1) ALL questions are compulsory.
 - (2) Draw neat diagrams wherever necessary.

EITHER

- (A) Explain phase velocity and group velocity. Obtain the relation between them for dispersive and non-dispersive medium.
 - (B) (i) Obtain an expression for the velocity of transverse wave on a stretched string.
 - (ii) The linear density of a vibrating string is 1.3×10^{-4} kg/m. A transverse wave is propagating on the string and is described by equation $Y = 0.021 \sin(30t + x)$, where x and y are in meters and t is in seconds. Find out the tension of the string.

OR

- (C) What is the temperament in musical scale? Describe equally tempered musical scale. 21/2
- (D) Explain the limit of human audibility with the help of suitable diagram. 21/2
- (E) Describe the different characteristics of musical sound. 21/2
- (F) Intensity level in a conversation is 70 dB above the threshold of 10⁻⁶ w/cm². Calculate the amplitude of vibration of air particles in the sound wave.

[velocity of sound in air = 350 m/s, density of air = 1.25 gm/liter, mean frequency = 500 Hz]

EITHER

- (A) What are transducers? Explain with neat diagram the construction and working of moving coil loudspeaker.
 - (B) (i) Define reverberation time. Derive Sabine's formula for the reverberation time by Jaegar's method.

NXO-12072

(Contd.)

www.rtmnuonline.com

	(ii) The volume of big hall is 1500 m² and reverberation period for it is 1.5 second. surface area of absorption of sound is 800 m². Calculate:	If total
	(a) total absorbing power of all the surfaces of hall.	
0.7	the mean absorption coefficient.	2
OR	7,5°	
(C)	What are the important requirements of a good auditorium?	21/2
(D)	Explain how sound is recorded and reproduced from compact discs.	21/2
(E)	Explain variable density method for the recording of sound on Circumian.	21/2
(F)	and is found to be I see. when a curtain close of 2011 is suspende	d at the
	center of the hall. If the dimensions of hall are $10 \times 8 \times 6$ m. Calculate the coeffice absorption of curtain cloth.	
EIT	THER	21/2
(A) What are <u>Ultrasonic</u> waves? Explain how it can be used as acoustic grating for the determination		
()	of wavelength and velocity of Ultrasonic waves in liquid.	nınatıon
(B)		for the
	production of ultrasonic waves.	3
	(ii) Calculate the thickness of quartz careful which can generate a fundamental frequency	ency of
OD	5.5 MHz. (Y = 8 × 10 ¹¹ dynes/one and ρ = 2.65 g/cm ³).	2
OR		
(C) Describe the production of ultrasonic waves by magnetostriction method with suitable diagram.		
(D)	What is most by GONAR OFF	21/2
	What is meant by SONAR ? Explain.	21/2
(E) A Nickel rod of 10 cm length having a density 8.1 × 10 ³ kg/m ³ and Young's modulus 82 × 10 ¹⁰ N/m ² is used in a magnetostriction oscillator. Find frequency of vibration of the rod.		
	52 × 10 14711 is ascertiff a magnetosurction oscillator. Find nequency of violation of	21/2
(F)	Explain any two applications of ultrasonic waves in medical science.	2½
EITHER		
	Draw the circuit diagram of bridge rectifier. Explain its working with input-output wavef	forms.
(B) (i) Explain with circuit diagram the working of zener diode as a voltage regulator under the		
(B)	(i) Explain with circuit diagram the working of zener diode as a vollage of following two situations:	
	(a) Load regulation	3
	(b) Line regulation.	5110
	\mathcal{L}°	

3.

www.rtmnuonline.com

4.

NXO-12072

www.rtmnuonline.com

(ii) A 10 V zener diode along with a series resistance is connected across a 40 V supply. Calculate the minimum value of resistance required, if the maximum zener current is 50 mA.

2

OR

- (C) What are the main features of IC-LM 317? Draw a neat circuit diagram of an electronic voltage regulator using IC-LM 317.
- (D) What do you mean by ripple factor? Show that ripple factor for half wave rectifier is 1.21 %.
- (E) Describe the action of shunt capacitor filter with necessary diagram.

21/2

- (F) Two power supplies A and B are available in the market. The power supply A has no load and full load voltage of 20 V and 15 V respectively, whereas these values are 20 V and 19V for power supply B. Justify which power supply is better.
- 5. Solve any ten (1 mark each):
 - (i) Why tempered scale is used in keyed instruments 2
 - (ii) Two sinusoidal waves $y_1 = 0.07 \cos (3t 4x)$ m and $y_2 = 0.07 \cos (t 2x)$ m are superimposed. Calculate the group velocity.
 - (iii) State the conditions for formation of stationary waves in medium.
 - (iv) What is the main difference between a live room and dead room?
 - (v) How Echelon effect is eliminated?
 - (vi) Why is a speaker usually housed in a large box?
 - (vii) What is Y-cut piezoelectric crystals?
 - (viii) Find the velocity of longitudinal waves produced in a quartz crystal of thickness 1 mm if $Y = 8.516 \times 10^{11}$ dynes/cm² and density $\rho = 2.65$ gm/cm³.
 - (ix) Why is a rod of ferromagnetic material used in magnetostriction oscillator?
 - (x) Draw the circuit diagram of a half wave rectifier.
 - (xi) What is the use of bleeder resistor in filter circuits of a power supply?
 - (xii) If $I_{dc} = 0.27$ A and $R_{c} = 1000$ Ω calculate P_{dc} .

1×10