$2\frac{1}{2}$

5

5

Bachelor of Science (B.Sc.) Semester–IV Examination CHEMISTRY (Physical Chemistry) CH-402

Paper—II

Time: Three Hours] [Maximum Marks: 50

Note :— (1) All **FIVE** questions are compulsory and carry equal marks.

- (2) Draw diagrams and give chemical equations wherever necessary.
- (A) Derive Gibb's-Helmholtz equation. The free energy change (ΔG) accompanying a given process is 88.77 kJ at 298 K and –83.68 kJ at 308 K. Calculate the change in enthalpy (ΔH) for a process at 303 K.
 - (B) Derive relation between standard free energy change (ΔG°) and equilibrium constant (Ka) of the reaction.

OR

- (C) Calculate the amount of heat supplied to Carnot engine working between 368 K and 288 K if the maximum work obtained is 895 Joules.
- (D) Calculate the total entropy change when 5 moles of ice is converted into water at 0°C. The latent heat of fusion of ice is 80 cal gm⁻¹.
- (E) Explain physical significance of Gibb's free energy.
- (F) State and explain partial molar quantities. 2½
- 2. (A) Derive expression for ΔH in terms of EMF of a cell and the temperature coefficient of EMF. Calculate the enthalpy change at 298 K for the reaction occurring in the cell:

$$Zn \mid 1.0 \text{ M ZnCl}, AgCl(s) \mid Ag.$$

The EMF of the cell at 298 K is 0.805 V and $\left(\frac{\partial E}{\partial T}\right)_{\!P}$ is -3.98×10^{-4} V/K.

Faraday = 96,500 coulombs.

(B) Derive an expression for EMF of a concentration cell with transference.

Calculate the EMF of the following cell at 298 K.

Pt |
$$H_2$$
 (1 atm) | HCl | HCl | H_2 (1 atm) | Pt (a = 0.001) (a = 0.1)

Given, Transference Number of H^+ ion = 0.84.

OR

- (C) What is galvanic cell? Explain with reference to the Daniell cell. 2½
- (D) Derive Nernst equation for EMF of a cell at 298 K. 2½
- (E) What is liquid junction potential? How can it be eliminated?
- (F) How is pH of a solution calculated by using glass electrode? 2½

(A)	Discuss the liquid drop model of nucleus. What are the evidences in its favour? Give its limit	_
		5
(B)	Explain orientation of dipoles in an electric field. Discuss the graphical method for determinadipole moment of a substance.	ntion of 5
	OR	
(C)	Discuss the nuclear stability on the basis of average binding energy per nucleon and mass nur	nber.
		21/2
(D)	Discuss applications of radioisotopes in any two fields.	21/2
(E)	The internuclear distance in HCl molecule is 1.26 Å if the bond is 17.7% ionic. Calculate its moment. (Given $q = 1.602 \times 10^{-19}$ C).	dipole 2½
(F)	How is dipole moment measurement used in predicting geometry of triatomic molecules ?	21/2
(A)	Derive an expression for the wave number of rotational lines in a rotational spectrum of rigid	rotator.
	What is the moment of inertia of a diatomic molecule whose internuclear distance is 150 pm a reduced mass is 1.5×10^{-27} kg.	and the
(B)	What are the harmonic and anharmonic oscillators? Draw their potential energy level diagrams is fundamental band and overtones?	. What
	OR	
(C)	Which of the following molecules show pure rotational spectra and why?	
	H ₂ (g), HCl(g), CO(g), NH ₄ Cl(s).	21/2
(D)	How do the intensities of rotational spectral lines vary ?	21/2
(E)	Define force constant. Calculate the force constant of N_2 , given that the fundamental frequency is $\times 10^5$ m ⁻¹ . The reduced mass of N_2 is 1.163×10^{-26} kg. (C = 3.0×10^8 ms ⁻¹).	s 2.358 2½
(F)	Briefly explain the different types of degrees of freedom possessed by linear and non-linear model.	lecules.
Atte	empt any TEN questions out of the following:—	
(i)	What do you mean by efficiency of a system ?	
(ii)	Define standard free energy change.	
(iii)	Write integrated form of Van't Hoff equation.	
(iv)	What is EMF of the cell ?	
(v)	What do you mean by standard electrode potential?	
(vi)	State two advantages of potentiometric titrations.	
(vii)	Define 'Nuclear Fusion'.	
(viii)	What is bond moment?	
(ix)	When the dipole moment of a molecule is zero, what will be its shape?	
(x)	What is zero point energy? What does it indicate?	
(xi)	Write Morse equation.	
(xii)	Give two examples of infrared-active molecules.	10=10

4.

5.