KNT/KW/16/5139

Bachelor of Science (B.Sc.) Semester—IV (C.B.S.) Examination

MATHEMATICS (M₈-Mechanics)

Paper—II

Time: Three Hours] [Maximum Marks: 60

- **N.B.** :— (1) Solve all the **five** questions.
 - (2) All questions carry equal marks.
 - (3) Questions 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT—I

- (A) Prove that any system of coplanar forces acting at different points of rigid body can be reduced to a single force through a given point and a couple.
 - (B) Five weightless rods of equal length are joined together so as to form a rhombus ABCD with one diagonal BD. If a weight W is attached to C and the system is suspended from A, show that there is a thrust in BD equal to $\frac{W}{\sqrt{3}}$.

OR

- (C) Derive the Cartesian equation of a common catenary in the form $y = c \cosh\left(\frac{x}{c}\right)$
- (D) If α and β be the inclinations to the horizon of the tangents at the extremities of a portion of a common catenary and l be the length of the portion, show that the height of one extremity over the other is $l \cdot \sin\left(\frac{\alpha+\beta}{2}\right)/\cos\left(\frac{\alpha-\beta}{2}\right)$, the two extremities being on one side of the vertex of the catenary.

NVM—5414 1 (Contd.)

UNIT—II

2. (A) If the velocities of a particle along and perpendicular to a radius vector from a fixed origin are λr^2 and $\mu\theta^2$, show that the equation of the path is $\frac{\lambda}{\theta} = \frac{\mu}{2r} + c$ and the components of accelerations

are
$$2\lambda^2 r^3 - \mu^2 \frac{\theta^4}{r}$$
 and $\lambda \mu r \theta^2 + 2\mu^2 \frac{\theta^3}{r}$.

(B) A particle is describing a plane curve. If the tangential and normal accelerations are constant throughout the motion, show that the angle Ψ , through which the direction of motion turns in time 't' is given by $\Psi = A \log (1 + Bt)$.

OR

- (C) Show that a particle executing Simple Harmonic Motion requires $\frac{1}{6}$ th of its period T, to move from the position of maximum displacement to one in which the displacement is half the amplitude.
- (D) For a particle moving in Simple Harmonic Motion with amplitude 'a' and periodic time 'T', derive the expression of velocity 'v' in terms of a, T and t and show that $\int_{0}^{T} v^{2} dt = \frac{2\pi^{2}a^{2}}{T}$.

UNIT—III

3. (A) Prove D' Alembert's principle that "the virtual work on a mechanical system by the applied forces and the reversed effective forces is zero" i.e.

$$\sum_{i} \left[\overline{F}_{i}^{(a)} - \overline{p}_{i} \right] \circ \delta \overline{r}_{i} = 0, \ i = 1, 2, \dots, n$$

where $\overline{F}_{i}^{(a)}$ is the applied force on the i^{th} particle of the system.

(B) Derive Lagrange's equations of motion in the form $\frac{d}{dt} \left(\frac{\partial L}{\partial q_j} \right) - \frac{\partial L}{\partial \dot{q}_j} = 0$, j = 1, 2,, n

for conservative system, where L = T - V is the Lagrangian of the system.

OR

(C) Define Rayleigh's dissipation function R, and show that the rate of energy dissipation due to friction is 2R.

NVM—5414 2 (Contd.)

6

6

(D) If L is the Lagrangian for a system having n degrees of freedom, show that $L' = L + \frac{dF}{dt}$ also satisfies Lagrange's equation, where $F = F(q_1, q_2, ..., q_n, t)$ is any arbitrary differentiable function.

UNIT—IV

- 4. (A) Prove that the problem of motion of two masses interacting only with each other can always be reduced to a problem of motion of a single mass.
 - (B) For a system moving in a finite region of space with finite velocity, prove that the time average of the kinetic energy is equal to the virial of the system i.e. $\overline{T} = -\frac{1}{2} \sum_{i} \overline{F_i} \circ \overline{r_i}$.

OR

(C) For a central force field F, derive the path of a particle of mass 'm' in the form :

$$\frac{d^2u}{d\theta^2} + u = -\frac{m}{h^2u^2} F\left(\frac{1}{u}\right), \text{ where } u = \frac{1}{r}.$$

(D) A particle moves on a curve $r^n = a^n \cos n\theta$ under the influence of a central force field. Prove that $f(r) \propto r^{-(2n+3)}$.

Ouestion—V

- 5. (A) Define virtual work done and state the principle of virtual work.
 - (B) Show that in a catenary, $s = c \sinh \frac{x}{c}$. 1½
 - (C) Find the normal acceleration of a particle describing a cycloid $s = 4a \sin \psi$. 1½
 - (D) Show that if the displacement of a particle is $x = a \cos nt + b \sin nt$, then it executes Simple Harmonic Motion. $1\frac{1}{2}$
 - (E) Write the Lagrangian of a particle moving in plane, in polar coordinates. 1½
 - (F) Define velocity dependent potential. 1½
 - (G) Show that the path of a particle in a central force field lies in one plane. 1½
 - (H) If the conservative force F is given by $F = \frac{-k}{r^2}$, find the potential V. 1½

3

NVM—5414