(Contd

Bachelor of Science (B.Sc.) Semester-IV (C.B.S.) Examination

PHYSICS

(Solid State Electronics and Molecular Physics)

Paper—II

[Maximum Marks: 50 Time: Three Hours] N.B. :- (1) All questions are compulsory. (2) Draw neat diagrams wherever necessary. (3) Symbols have their usual meaning unless otherwise stated EITHER (A) With a neat diagram, describe construction and working of an N-P-N bipolar transistor. 5 Explain the construction of a light emitting diode and state its uses. (B) (i) 3 (ii) An LED made of Ga As P has a band gap of 1.9 ev at room temperature. Calculate the wavelength of light emitted by it when it is forward biased. (Given: $h = 6.63 \times 10^{-34} \text{ JS}$) 2 OR (C) Explain Thermal runway and how can it be avoided? 21: (D) Explain the construction and working of a solar cell. 21/2 (E) Draw the circuit diagram of an emitter bias circuit and explain its working. 21/3 (F) In a NPN transistor the common base current gain is 0.98. The reverse saturation current $I_{CBO} = 12.5 \mu A$. Determine the base and collector current for an emitter current $I_E = 2 \text{ mA}$. 21/3 EITHER Give the construction and working of an n-channel depletion MOSFET. State the special features of MOSFET. 63 When the V_{Gr} of a JFET changes from -3.1 V to -3.0 V, the drain current changes from (i) 1 mA to 1.3 mA. Calculate the value of transconductance.

www.rtmnuonline.com

		www.timuomine.com	
	OR	Define the parameters of a JFET and obtain the relation between them.	
	(C)	Define the parameters of TRET over BIT.	2%
	(D)	State the advantages of JFET over BJT. Calculate the voltage gain of JFET voltage amplifier having transconductance 4000 jumbs.	21/2
	(E)	Calculate the voltage gain of $ME1$ voltage and marked and provided load resistance 10 k Ω .	and the
	(77)	Draw the output characteristic curves of a JFET and explain the various regions.	21/2
		*	27
_	_	THER Derive an expression for rotational energy of a diatomic molecules.	٠
,		On the basis of moment of inertia differentiate between symmetric top and spho	ricalto
	(B)	molecules. Also give one example of each type.	ilcai to
		(ii) The moment of inertia of CO molecule is 1.46 × 10 ⁻⁴⁶ kgm ² . Calculate the energy	ovine'
		and angular velocity in the lowest energy level.	٠ ١١١ رم
	OR		·
	TOR	Draw energy level diagram showing P and R branches for a diatomic vibrating rotate	or. 25
	\mathcal{L}	Derive the expression for frequency of a vibrating molecule.	2½
	(E)	The force constant for the CO-bond is 187 N/m, find the frequency of vib	
	(12)	CO-molecule.	
		(Give mass of C^{12} atom = 1.99 × 10 ⁻²⁶ kg and mass of O^{16} atom = 2.66 × 10 ⁻²⁶ kg	(). 2½
,	SEX	Write in brief about intensities of rotational lines.	25
ŕ	EII	THER	
_	-	What is Raman effect? Describe the experimental arrangement to study Raman effect	t.
	_\^\ ∕B}	How does the Quantum theory explain Raman effect?	
1		(ii) With an exciting line 2536 Å, a Raman line for a sample is observed at 2612 Å,	calcula
		the Raman shift in cm ⁻¹ .	
	or		
	(OX	What is nuclear magnetic resonance? Draw the block diagram of an NMR spectron	ieter.
	المتكاث	What is nuclear magnetic resonance (2 and)	21
			25
	(D)	State and explain the Frank-Condon principle.	ae etakeš
	(E)	In an experiment in the study of Raman effect, with exciting line of 5460 Å a sample giv	25
	()	Time at 6500 A. Find the wavelength of the anti-stokes into.	21/
		Differentiate between Raman scattering and Fluorescent scattering.	47
	(F)	Differentiate between Kallian Southern 2	(Contd
	_	4	

(Contd.)

www.rtmnuonline.com

www.rtmnuonline.com

- Attempt any ten questions: 5.
 - (y) Draw the symbol for a P-N-P transistor.
 - Define Heat Sink.
 - (iii) For α CE transistor $\alpha = 0.95$ calculate the value of β .
 - (iv) Draw the symbol for a P-channel JFET.
 - (v) A JFET has the following parameters, $I_{DSS} = 32 \text{ mA}$, $V_{OS(off)} = -8 \text{ V}_{2} \text{ V}_{OS} = 32 \text{ W}$ Find value of drain current.
 - (vi) Draw the circuit symbols of p-channel enhancement MOSFET.
 - (vii) What is the selection rule for rotational transitions?
 - (Viii) What do you mean by asymmetric top molecule?
 - (ix) What is an anharmonic oscillator?
 - What is ESR spectroscopy?
 - aman s (xi) Write the selection rule for vibrational rotational Raman spectra
 - (xii) State the applications of Raman spectroscopy.

 $1 \times 10 = 10$