Bachelor of Science (B.Sc.) Semester-VI Examination
 M_{12} : SPECIAL THEORY OF RELATIVITY
 Optional Paper-2
 (Mathematics)

[Maximum Marks : 60
Time : Three Hours]
Note :-(1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) A particle of mass moving with velocity u makes a head on collision with a particle of mass m_{2} initially at rest, so that their final velocities v_{1} and v_{2} are along the same line. If the collision is elastic, show that : $\mathrm{v}_{2}=\frac{2 \mathrm{u}}{1+\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}}$.
(B) Show that:
$x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ is Lorentz invariant.

OR

(C) Prove that:
(i) Newtonian fundamental equations of Motion and
(ii) Length of a rod
are invariant under Galilean transformations.
(D) Give geometric interpretation of Lorentz transformations.

UNIT-II

2. (A) Explain the phenomenon of "Time dilation" in special theory of relativity. Also find at what speed should a clock be moved so that it may appear to lose 1 minute in each hour.
(B) Show that if l_{o} is the rest volume of a cube, then $\ell_{0}^{3} \sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}$ is the volume viewed from a reference frame moving in a direction parallel to an edge of the cube.

OR

(C) Let q and q' be the velocities of a particle in two inertial systems S and S^{\prime} respectively. Initially systems are coincident and S^{\prime} has velocity v relative to S in X -direction. Show that :

(D) A particle instantaneously at rest in frame of reference S^{\prime}, experiences an acceleration in it represented by a vector $\vec{f}^{\prime}=3 \vec{i}+4 \vec{j}+12 \vec{k}$. What is the acceleration measured from the frame of reference S; given that S^{\prime} moves with velocity 0.98 C relative to S along positive x -axis ?

UNIT-III

3. (A) For the symmetric tensor $\mathrm{A}^{\mu \nu}$, prove that:
(i) Symmetric property for $\mathrm{A}^{\mu \nu}$ remains unchanged under tensor law of transformation, and
(ii) $\mathrm{A}^{\mu \nu}$ has 10 independent components in 4-dimension. 6
(B) If g_{j} is a symmetric tensor, then define its conjugate g^{dj} and prove that g^{jj} is a tensor.

OR

(C) Transform $\mathrm{ds}^{2}=\mathrm{dx}^{2}+\mathrm{dy}^{2}+\mathrm{dz}^{2}$ in spherical coordinates.
(D) If A^{μ} and B^{μ} are contravariant vectors and $\mathrm{C}_{\mu \nu} \mathrm{A}^{\mu} \mathrm{B}^{v}$ is an invariant then prove that $\mathrm{C}_{\mu v}$ is a tensor of the second order.

UNIT-IV

4. (A) Derive transformation equations for momentum and energy under Lorentz transformations.
(B) Explain the formulation of energy momentum four vector p^{4} to obtain $\mathrm{p}^{4}=\left(\mathrm{p}_{x}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{z}, \frac{\mathrm{E}}{\mathrm{C}}\right)$.

OR

(C) Derive component form of Maxwell's equations of electromagnetic theory in vacuum.
(D) Derive transformation equation for mass of the particle.

Question-V

5. (A) Explain, how did Einstein rule out the concept of absolute time.
(B) Let S and S^{\prime} be inertial frames and S^{\prime} is moving with velocity $\mathrm{v}=(\mathrm{o}, \mathrm{v}, \mathrm{o})$ along Y -axis. Then write the form of Lorentz transformation equations. $11 / 2$
(C) An electron is moving with a speed of 0.8 c in a direction opposite to that of a moving photon. Calculate the relative velocity of electron and photon.
(D) The length of a rocketship is 100 meters on the ground. When it is in flight its length observed on the ground is 81 meters, calculate its speed in terms of speed of light c .
(E) Write transformation law for the tensor quantity $\mathrm{A}^{\mathrm{i}}{ }^{\mathrm{j}} \alpha \beta \gamma$ and find its rank when $\alpha=\mathrm{i} . \quad 11 / 2$
(F) Minkowskian metric is $\mathrm{ds}^{2}=\left(\mathrm{dx}^{4}\right)^{2}-\left(\mathrm{dx}^{1}\right)^{2}-\left(\mathrm{dx}^{2}\right)^{2}-\left(\mathrm{dx}^{3}\right)^{2}$, so find $\mathrm{g}=\left|\mathrm{g}_{\mathrm{ij}}\right|$.
(G) Using $p^{2}-\frac{E^{2}}{c^{2}}=-M_{o}^{2} c^{2}$, prove that a particle of zero rest mass travels with the speed of light c.
(H) Derive Newtonian Kinetic energy of the particle from its expression of relativistic kinetic energy. $11 / 2$
