TKN/KS/16/5913

Bachelor of Science (B.Sc.) (Mathematics) (C.B.S.) Semester–VI Examination

M₁₁ ABSTRACT ALGEBRA

Compulsory Paper—1

Time—Three Hours]

[Maximum Marks—60

- **N.B.**:— (1) Solve all the **FIVE** questions.
 - (2) All questions carry equal marks.
 - (3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT-I

- 1. (A) Show that in a group G, the mapping $T: G \to G$ defined by $T(x) = x^{-1} \ \forall \ x \in G$ is an automorphism of G if and only if G is abelian.
 - (B) For any group G, prove that I(G) is a normal subgroup of A(G), where I(G) is group of inner automorphisms of G and A(G) is group of all automorphisms of G.

OR

(C) If G is a finite group and $H \neq G$ is a subgroup of G such that $O(G) \times i(H)!$, then prove that H must contain a nontrivial normal subgroup of G.

MXP-M—3528 1 Contd.

6

UNIT-III

- 3. (A) Let a mapping $T: V_2 \rightarrow V_2$ be defined by T(x, y) = (x', y'), where $x' = x \cos \theta y \sin \theta$, $y' = x \sin \theta + y \cos \theta$. Show that T is a linear map.
 - (B) Let $T:U\to V$ be a linear map. Then prove that :
 - (a) R(T) is a subspace of vector space V.
 - (b) N(T) is a subspace of vector space U. 6

OR

- (C) Let $T: U \to V$ be a nonsingular linear map. The prove that $T^1: V \to U$ is linear, one-one and onto map.
- (D) Let $T: V_3 \rightarrow V_3$ be a linear map defined by $T(e_1) = e_3, T(e_2) = e_1, T(e_3) = e_2.$ Prove that $T^2 = T^{-1}$.

UNIT-IV

4. (A) Find the matrix of linear map $T: V_3 \rightarrow V_3$ defined by :

$$T(x_1, x_2, x_3) = (x_1 - x_2 + x_3, 2x_1 + 3x_2 - \frac{1}{2}x_3, x_1 + x_2 - 2x_3) \text{ relative to the bases}$$

$$B_1 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$$

$$B_2 = \{(1, 1, 0), (1, 2, 3), (-1, 0, 1)\}.$$

MXP-M—3528 3 Contd.

(B) Find the range, kernel, rank and nullity of the matrix:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ -1 & 1 & 0 \end{bmatrix}$$

OR

(C) Define Inner Product Space. Let V be a set of all continuous complex-valued functions on the closed interval [0, 1]. For $f, g \in D$ define

$$f.g = \int_{0}^{1} f(t) \, \overline{g(t)} \, dt$$

show that f.g defines an inner product on V.

(D) Using Gram-Schmidt orthogonalization process, orthonormalize the set of linearly independent vectors $\{(1,\,0,\,1,\,1),\,(-1,\,0,\,-1,\,1),\,(0,\,-1,\,1,\,1)\}$ of V_4 .

Question-V

- 5. (A) Show that conjugacy relation 'N' on a group G is symmetric. 11/2
 - (B) If S is a finite set of n elements, then state Cayley's theorem. $1\frac{1}{2}$
 - (C) Prove that the set

B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} is a basis of vector space V_3 .

MXP-M—3528 4 Contd.

(D) Let G be a group and $a \in G$. Define the normalizer N(a) of a in G and prove that N(a) is a subgroup of G.

UNIT-II

- 2. (A) In any vector space V over the field F, prove the following:
 - (a) $\alpha 0 = 0$ for every scalar $\alpha \in F$ and $0 \in V$.
 - (b) 0u = 0 for every $u \in V$ and $0 \in F$.
 - (c) $\alpha u = 0 \Leftrightarrow \alpha = 0 \text{ or } u = 0, \text{ where } \alpha \in F \text{ and } u \in V.$
 - (B) If S is a non empty subset of a vector space V over the field F, then prove that [S] is the smallest subspace of V containing S.

OR

- (C) Let $S = \{(1, 1, 0), (0, 1, 1), (1, 0, -1), (1, 1, 1)\}$
 - (i) Show that the ordered set S is linearly dependent.
 - (ii) Locate one of the vectors that blongs to the span of the previous ones.
 - (iii) Find the largest linearly independent subset of S. 6
- (D) Prove that in aⁿ n-dimensional vector space V, any set of n linearly independent vectors is a basis. 6

(D) If U and W are finite dimensional subspaces of a vector space V and $U+W=U\oplus W$, then prove that

$$\dim (U + W) = \dim U + \dim W.$$
 1½

- (E) Let $T: V_2 \to V_2$ be a linear map defined by $T(x_1, x_2) = (x_1 x_2, x_1 + x_2), \text{ show that T is one-one.}$
- (F) Let $T: V_3 \to V_2$ be defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1)$ and $S: V_2 \to V_2$ be defined by $S(x_1, x_2) = (x_2, x_1).$ Then determine ST. 1½
- (G) Let V be an inner product space. Then for arbitrary vectors u and v in V. Prove that

$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|.$$
 1½

(H) Show that a matrix $H = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$

MXP-M—3528 2 Contd.

MXP-M—3528 5 4050