Bachelor of Science (B.Sc.) (Mathematics) (C.B.S.)
Semester-VI Examination
M_{11} ABSTRACT ALGEBRA
Compulsory Paper-1

Time-Three Hours]
[Maximum Marks-60
N.B. :- (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Show that in a group G, the mapping $\mathrm{T}: \mathrm{G} \rightarrow \mathrm{G}$ defined by $\mathrm{T}(\mathrm{x})=\mathrm{x}^{-1} \forall \mathrm{x} \in \mathrm{G}$ is an automorphism of G if and only if G is abelian.
(B) For any group G, prove that $\mathrm{I}(\mathrm{G})$ is a normal subgroup of $A(G)$, where $I(G)$ is group of inner automorphisms of G and $A(G)$ is group of all automorphisms of G.

OR

(C) If G is a finite group and $\mathrm{H} \neq \mathrm{G}$ is a subgroup of G such that $\mathrm{O}(\mathrm{G}) \times \mathrm{i}(\mathrm{H})$!, then prove that H must contain a nontrivial normal subgroup of G. 6

UNIT-III

3. (A) Let a mapping $\mathrm{T}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ be defined by $\mathrm{T}(\mathrm{x}, \mathrm{y})=\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$, where $\mathrm{x}^{\prime}=\mathrm{x} \cos \theta-\mathrm{y} \sin \theta$, $y^{\prime}=x \sin \theta+y \cos \theta$. Show that T is a linear map.

6
(B) Let $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear map. Then prove that:
(a) $R(T)$ is a subspace of vector space V.
(b) $N(T)$ is a subspace of vector space U. 6

OR
(C) Let $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a nonsingular linear map. The prove that $\mathrm{T}^{-1}: \mathrm{V} \rightarrow \mathrm{U}$ is linear, one-one and onto map.
(D) Let $\mathrm{T}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{3}$ be a linear map defined by
$T\left(e_{1}\right)=e_{3}, T\left(e_{2}\right)=e_{1}, T\left(e_{3}\right)=e_{2}$.
Prove that $\mathrm{T}^{2}=\mathrm{T}^{-1}$.

UNIT-IV

4. (A) Find the matrix of linear map $T: V_{3} \rightarrow V_{3}$ defined by :
$\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3}, 2 \mathrm{x}_{1}+3 \mathrm{x}_{2}-1 / 2 \mathrm{x}_{3}\right.$,
$\left.x_{1}+x_{2}-2 x_{3}\right)$ relative to the bases
$B_{1}=\{(1,0,0),(0,1,0),(0,0,1)\}$
$B_{2}=\{(1,1,0),(1,2,3),(-1,0,1)\}$.
(B) Find the range, kernel, rank and nullity of the matrix :

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 2 & 3 \\
-1 & 1 & 0
\end{array}\right]
$$

OR

(C) Define Inner Product Space. Let V be a set of all continuous complex-valued functions on the closed interval $[0,1]$. For $f, g \in D$ define

$$
\mathrm{f} . \mathrm{g}=\int_{0}^{1} \mathrm{f}(\mathrm{t}) \overline{\mathrm{g}(\mathrm{t})} \mathrm{dt}
$$

show that f.g defines an inner product on V .
(D) Using Gram-Schmidt orthogonalization process, orthonormalize the set of linearly independent vectors $\{(1,0,1,1),(-1,0,-1,1),(0,-1,1,1)\}$ of V_{4}.

Question-V

5. (A) Show that conjugacy relation ' N ' on a group G is symmetric.
(B) If S is a finite set of n elements, then state Cayley's theorem.
(C) Prove that the set

$$
\mathrm{B}=\{(1,0,0),(1,1,0),(1,1,1)\} \text { is a basis }
$$ of vector space V_{3}.

MXP-M—3528 4
(D) Let G be a group and $\mathrm{a} \in \mathrm{G}$. Define the normalizer $N(a)$ of a in G and prove that $N(a)$ is a subgroup of G.

UNIT-II

2. (A) In any vector space V over the field F, prove the following :
(a) $\alpha 0=0$ for every scalar $\alpha \in \mathrm{F}$ and $0 \in \mathrm{~V}$.
(b) $0 \mathrm{u}=0$ for every $\mathrm{u} \in \mathrm{V}$ and $0 \in \mathrm{~F}$.
(c) $\alpha u=0 \Leftrightarrow \alpha=0$ or $u=0$, where $\alpha \in \mathrm{F}$ and $u \in V$.
(B) If S is a non empty subset of a vector space V over the field F, then prove that $[\mathrm{S}]$ is the smallest subspace of V containing S .

OR

(C) Let $\mathrm{S}=\{(1,1,0),(0,1,1),(1,0,-1),(1,1,1)\}$
(i) Show that the ordered set S is linearly dependent.
(ii) Locate one of the vectors that blongs to the span of the previous ones.
(iii) Find the largest linearly independent subset of S.

6
(D) Prove that in $\mathrm{a}^{\mathrm{n}} \mathrm{n}$-dimensional vector space V , any set of n linearly independent vectors is a basis. 6
(D) If U and W are finite dimensional subspaces of a vector space V and $\mathrm{U}+\mathrm{W}=\mathrm{U} \oplus \mathrm{W}$, then prove that

$$
\begin{equation*}
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W \tag{1/2}
\end{equation*}
$$

(E) Let $\mathrm{T}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ be a linear map defined by $\left.T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1}+x_{2}\right)\right\}$, show that T is one-one.
(F) Let $\mathrm{T}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{2}$ be defined by

$$
\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}, \mathrm{x}_{1}\right)
$$

and $\mathrm{S}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ be defined by
$S\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$. Then determine ST. $11 / 2$
(G) Let V be an inner product space. Then for arbitrary vectors u and v in V. Prove that

$$
\|\mathrm{u}+\mathrm{v}\| \leq\|\mathrm{u}\|+\|\mathrm{v}\| .
$$

(H) Show that a matrix $\mathrm{H}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is orthogonal.

