KNT/KW/16/5198

Bachelor of Science (B.Sc.) Semester—VI (C.B.S.) Examination MATHEMATICS (Abstract Algebra)

Compulsory Paper—1

Time : Three Hours] [Maximum Marks : 60

- **N.B.** :— (1) Solve all the *five* questions.
 - (2) All questions carry equal marks.
 - (3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT—I

- 1. (A) Define an automorphism of group G. Find whether a mapping $\phi : G \to G$ defined as $\phi(x) = x^2 \ \forall \ x \in G$ is an automorphism, where group $G = (R^+, \cdot)$.
 - (B) Prove that $I(G) \approx G/Z$, where I(G) is the group of inner automorphisms of group G and Z is the centre of group G.

OR

(C) If G is a finite group, then prove that :

$$Ca = \frac{O(G)}{O(N(a))}$$
, where $Ca = O(C(a))$.

- (D) Let Z be the centre of group G and for $a \in G$, N(a) be the normalizer of a in G. Then prove that:
 - (i) $a \in Z \Leftrightarrow N(a) = G$

and (ii) if G is finite, then
$$a \in Z \Leftrightarrow O(N(a)) = O(G)$$
.

6

UNIT—II

2. (A) Let R^+ be the set of all positive real numbers. Define the operations of addition \oplus and scalar multiplication \otimes as follows:

$$u \oplus v = uv \quad \forall u, v \in R^+$$

and $\alpha \otimes u = u^{\alpha} \quad \forall \ u \in R^{+} \text{ and } \alpha \in F = R.$

Prove that R⁺ is a real vector space.

6

6

- (B) If S and T are non empty subsets of a vector space V, then prove that
 - (i) $SCT \Rightarrow [S] C [T]$.
 - (ii) [S] = S if and only if S is a subspace of V.

$$(iii) [[S]] = [S].$$

OR

NVM—5441 1 (Contd.)

- (C) Let the set $\{v_1, v_2, \dots, v_k\}$ be a linearly independent subset of an n-dimensional vector space V. Then prove that we can find vectors $v_{k+1}, v_{k+2}, \dots, v_n$ in V such that the set $\{v_1, v_2, \dots, v_k, v_{k+1}, \dots, v_n\}$ is a basis for V.
- (D) Let $\{(1, 1, 1, 1), (1, 2, 1, 2)\}$ be a linearly independent subset of the vector space V_4 . Extend it to the basis for V_4 .

UNIT—III

- 3. (A) Let U, V be vector spaces over a field F and T : $U \rightarrow V$ be a linear map. Then prove that :
 - (a) $T(O_{u}) = O_{u}$
 - (b) $T(-u) = -T(u), \forall u \in U$ and
 - (c) $T(\alpha_1 u_1 + \alpha_2 u_2 + + \alpha_n u_2) = \alpha_1 T(u_1) + \alpha_2 T(u_2) + + \alpha_n T(u_n), \forall u_i \in U, \alpha_i \in F, 1 \le i \le n \text{ and } n \in N.$
 - (B) Let $T: V_4 \to V_3$ be a linear map defined by $T(x_1, x_2, x_3, x_4) = (x_1 x_4, x_2 + x_3, x_3 x_4)$. Find range, rank, kernel and nullity of T and verify Rank-Nullity theorem.

OR

- (C) Let $T: U \to V$ be a linear map and U a finite-dimensional vector space. Then prove that $\dim R(T) + \dim N(T) = \dim U$.
- (D) Prove that the linear map $T: V_3 \rightarrow V_3$ defined by $T(e_1) = e_1 + e_2$, $T(e_2) = e_2 + e_3$, $T(e_3) = e_1 + e_2 + e_3$ is nonsingular and find tis inverse.

UNIT—IV

- 4. (A) Let a linear map $T: P_3 \to P_2$ be defined by $T(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3) = \alpha_3 + (\alpha_2 + \alpha_3) x + (\alpha_0 + \alpha_1) x^2$. Then determine matrix of T relative to the bases $B_1 = \{1, (x 1), (x 1)^2, (x 1)^3\}$ and $B_2 = \{1, x, x^2\}$.
 - (B) Prove that the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 2 \end{bmatrix}$ is nonsingular and find its inverse.

OR

- (C) In an inner product space V_i prove that :
 - (i) $\| \mathbf{u} + \mathbf{v} \| \le \| \mathbf{u} \| + \| \mathbf{v} \| \ \forall \ \mathbf{u}, \mathbf{v} \in \mathbf{V}$
 - (ii) Any orthogonal set of no zero vectors is linearly independent.
- (D) Find the orthonormal basis of P_2 [-1, 1] starting from the basis {1, x, x²} using the inner product defined by $f \cdot g = \int_{-1}^{1} f(x) \cdot g(x) dx$.

UNIT-V

- 5. (A) Show that conjugacy relation '~' on group G is reflexive.
 - (B) Show that $I(G) = \{I\}$ for an abelian group G, where I(G) is the set of inner automorphisms of G.
 - (C) Let $S = \{(x_1, x_2, x_3) \in V_3/x_2 + x_3 = x_1\}$. Prove that S is a subspace of V_3 .
 - (D) Is the sum x-axis + y-axis in V_3 a direct sum?
 - (E) Find whether a mapping $T: V_2 \rightarrow V_2$ defined by $T(x, y) = (x + 1, y + 2) \ \forall \ (x, y) \in V_2$ is a linear map.
 - (F) If U and V are finite dimensional vector spaces such that dimU = dimV. Then prove that a linear map $T: U \to V$ is one-one if and only if it is onto.
 - (G) Show that the matrix $U = \begin{bmatrix} 1/\sqrt{2} & i/\sqrt{2} \\ i/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$ is unitary. 1½
 - (H) In an inner product space V, prove that $u \cdot (\alpha v) = \overline{\alpha} (u \cdot v)$, $\forall u, v \in V$ and $\alpha \in F$. $1\frac{1}{2}$

NVM—5441 3