KNT/KW/16/5198

Bachelor of Science (B.Sc.) Semester-VI (C.B.S.) Examination MATHEMATICS (Abstract Algebra) Compulsory Paper-1

Time : Three Hours]
N.B. :- (1) Solve all the five questions.
(2) All questions carry equal marks.
(3) Question Nos. $\mathbf{1}$ to $\mathbf{4}$ have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Define an automorphism of group G. Find whether a mapping $\phi: G \rightarrow G$ defined as $\phi(x)=$ $x^{2} \forall x \in G$ is an automorphism, where group $G=\left(\mathrm{R}^{+}, \cdot\right)$.
(B) Prove that $\mathrm{I}(\mathrm{G}) \approx \mathrm{G} / \mathrm{Z}$, where $\mathrm{I}(\mathrm{G})$ is the group of inner automorphisms of group G and Z is the centre of group G.

OR

(C) If G is a finite group, then prove that :

$$
\begin{equation*}
\mathrm{Ca}=\frac{\mathrm{O}(\mathrm{G})}{\mathrm{O}(\mathrm{~N}(\mathrm{a}))} \text {, where } \mathrm{Ca}=\mathrm{O}(\mathrm{C}(\mathrm{a})) . \tag{6}
\end{equation*}
$$

(D) Let Z be the centre of group G and for $\mathrm{a} \in \mathrm{G}, \mathrm{N}(\mathrm{a})$ be the normalizer of a in G . Then prove that:
(i) $a \in Z \Leftrightarrow N(a)=G$
and (ii) if G is finite, then $a \in Z \Leftrightarrow O(N(a))=O(G)$.
UNIT-II
2. (A) Let R^{+}be the set of all positive real numbers. Define the operations of addition \oplus and scalar multiplication \otimes as follows :
$\mathrm{u} \oplus \mathrm{v}=\mathrm{u} v \quad \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}^{+}$
and $\alpha \otimes \mathrm{u}=\mathrm{u}^{\alpha} \quad \forall \mathrm{u} \in \mathrm{R}^{+}$and $\alpha \in \mathrm{F}=\mathrm{R}$.
Prove that R^{+}is a real vector space.
(B) If S and T are non empty subsets of a vector space V , then prove that
(i) $\mathrm{SCT} \Rightarrow[\mathrm{S}] \mathrm{C}[\mathrm{T}]$.
(ii) $[\mathrm{S}]=\mathrm{S}$ if and only if S is a subspace of V .
(iii) $[[\mathrm{S}]]=[\mathrm{S}]$.
(C) Let the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots \mathrm{v}_{\mathrm{k}}\right\}$ be a linearly independent subset of an n -dimensional vector space V . Then prove that we can find vectors $\mathrm{v}_{\mathrm{k}+1}, \mathrm{v}_{\mathrm{k}+2}, \ldots \ldots \mathrm{v}_{\mathrm{n}}$ in V such that the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{k}}\right.$, $\left.\mathrm{v}_{\mathrm{k}+1}, \ldots \ldots . ., \mathrm{v}_{\mathrm{n}}\right\}$ is a basis for V .
(D) Let $\{(1,1,1,1),(1,2,1,2)\}$ be a linearly independent subset of the vector space V_{4}. Extend it to the basis for V_{4}.

UNIT-III

3. (A) Let U, V be vector spaces over a field F and $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear map. Then prove that :
(a) $\mathrm{T}\left(\mathrm{O}_{\mathrm{u}}\right)=\mathrm{O}_{\mathrm{v}}$
(b) $\mathrm{T}(-\mathrm{u})=-\mathrm{T}(\mathrm{u}), \forall \mathrm{u} \in \mathrm{U}$ and
(c) $\mathrm{T}\left(\alpha_{1} \mathrm{u}_{1}+\alpha_{2} \mathrm{u}_{2}+\ldots .+\alpha_{\mathrm{n}} \mathrm{u}_{2}\right)=\alpha_{1} \mathrm{~T}\left(\mathrm{u}_{1}\right)+\alpha_{2} \mathrm{~T}\left(\mathrm{u}_{2}\right)+\ldots . .+\alpha_{\mathrm{n}} \mathrm{T}\left(\mathrm{u}_{\mathrm{n}}\right), \forall \mathrm{u}_{\mathrm{i}} \in \mathrm{U}, \alpha_{\mathrm{i}} \in$ $\mathrm{F}, 1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{n} \in \mathrm{N}$.
(B) Let $T: V_{4} \rightarrow V_{3}$ be a linear map defined by $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{4}, x_{2}+x_{3}, x_{3}-x_{4}\right)$. Find range, rank, kernel and nullity of T and verify Rank-Nullity theorem.

OR

(C) Let $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear map and U a finite-dimensional vector space. Then prove that $\operatorname{dim} R(T)+\operatorname{dim} N(T)=\operatorname{dim} U$.
(D) Prove that the linear map $T: V_{3} \rightarrow V_{3}$ defined by $T\left(e_{1}\right)=e_{1}+e_{2}, T\left(e_{2}\right)=e_{2}+e_{3}, T\left(e_{3}\right)=$ $e_{1}+e_{2}+e_{3}$ is nonsingular and find tis inverse.

UNIT—IV

4. (A) Let a linear map $\mathrm{T}: \mathrm{P}_{3} \rightarrow \mathrm{P}_{2}$ be defined by $\mathrm{T}\left(\alpha_{0}+\alpha_{1} \mathrm{x}+\alpha_{2} \mathrm{x}^{2}+\alpha_{3} \mathrm{x}^{3}\right)=\alpha_{3}+\left(\alpha_{2}+\alpha_{3}\right) \mathrm{x}$ $+\left(\alpha_{0}+\alpha_{1}\right) x^{2}$. Then determine matrix of T relative to the bases $B_{1}=\left\{1,(x-1),(x-1)^{2}\right.$, $\left.(x-1)^{3}\right\}$ and $B_{2}=\left\{1, x, x^{2}\right\}$.
(B) Prove that the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 2\end{array}\right]$ is nonsingular and find its inverse.

OR

(C) In an inner product space V_{i} prove that:
(i) $\|\mathrm{u}+\mathrm{v}\| \leq\|\mathrm{u}\|+\|\mathrm{v}\| \forall \mathrm{u}, \mathrm{v} \in \mathrm{V}$
(ii) Any orthogonal set of no zero vectors is linearly independent.
(D) Find the orthonormal basis of $\mathrm{P}_{2}[-1,1]$ starting from the basis $\left\{1, \mathrm{x}, \mathrm{x}^{2}\right\}$ using the inner product defined by $\mathrm{f} \cdot \mathrm{g}=\int_{-1}^{1} f(x) \cdot g(x) d x$.

UNIT-V

5. (A) Show that conjugacy relation ' \sim ' on group G is reflexive.
(B) Show that $\mathrm{I}(\mathrm{G})=\{\mathrm{I}\}$ for an abelian group G , where $\mathrm{I}(\mathrm{G})$ is the set of inner automorphisms of G.
(C) Let $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V_{3} / x_{2}+x_{3}=x_{1}\right\}$. Prove that S is a subspace of V_{3}. $11 / 2$
(D) Is the sum x-axis $+y$-axis in V_{3} a direct sum ? $11 / 2$
(E) Find whether a mapping $\mathrm{T}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{2}$ defined by $\mathrm{T}(\mathrm{x}, \mathrm{y})=(\mathrm{x}+1, \mathrm{y}+2) \forall(\mathrm{x}, \mathrm{y}) \in \mathrm{V}_{2}$ is a linear map.
(F) If U and V are finite dimensional vector spaces such that $\operatorname{dim} U=\operatorname{dimV}$. Then prove that a linear map $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ is one-one if and only if it is onto.
(G) Show that the matrix $U=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ i / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$ is unitary.
(H) In an inner product space V, prove that $u \cdot(\alpha v)=\bar{\alpha}(u \cdot v), \forall u, v \in V$ and $\alpha \in F . \quad 11 / 2$
