Bachelor of Science (B.Sc.) Semester-VI (C.B.S.) Examination M_{12}-DISCRETE MATHEMATICS AND ELEMENTARY NUMBER THEORY Paper-2
 (Mathematics)

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Given that $\mathrm{A}=\{1,2,3,4,5,6,7,8,9,10\}$ and a relation R on A is such that $R=\{(x, y) / x+y=10\}$. Show that R is neither reflexive nor transitive but it is symmetric.
(B) Let (L, \leq) be a Lattice. For any $\mathrm{a}, \mathrm{b}, \mathrm{c}, \in \mathrm{L}$; if $*$ and \oplus are operations of meet and join, then prove that :
$b \leq c \Rightarrow \begin{cases}a * b & \leq a * c \\ a \oplus b & \leq a \oplus c\end{cases}$

OR

(C) Define a distributive lattice and show that every chain is a distributive lattice.
(D) Define : Indegree, Outdegree and Total degree of node. Find all the indegree and outdegree of the digraph.

NXO-20505

1

(Contd.

UNIT-II

2. (A) Prove that if g is greatest common divisor of b and c, then there exist integers x_{0} and y_{0} such that $\mathrm{g}=(\mathrm{b}, \mathrm{c})=\mathrm{bx}_{0}+\mathrm{cy}_{0}$.
(B) Find the value of x and y that satisfy the equation :

$$
243 x+198 y=9
$$

OR

(C) Let p be an odd prime and $(\mathrm{a}, \mathrm{p})=1$. Then prove that $\mathrm{a}^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p})$.
(D) Evaluate :
$(\mathrm{n}, \mathrm{n}+1)$ and $[\mathrm{n}, \mathrm{n}+1]$.

UNIT-III

3. (A) Define Legendre's Symbol. Prove that if p is an odd prime, then
$\left(\frac{-1}{\mathrm{p}}\right)=\left\{\begin{array}{ccc}1 & \text { if } & \mathrm{p} \equiv 1(\bmod 4) \\ -1 & \text { if } & \mathrm{p} \equiv 3(\bmod 4)\end{array}\right.$
(B) Evaluate $\left(\frac{-42}{61}\right)$ and $\left(\frac{30}{71}\right)$.

OR

(C) Solve the congruence if it is solvable :
$x^{2} \equiv 7(\bmod 31)$.
(D) Prove that the quadratic congruence :
$\mathrm{x}^{2} \equiv \mathrm{a}(\bmod \mathrm{p})$ where p is odd positive prime integer with $\mathrm{a} \neq \mathrm{kp}$ for any integer k , has exactly two solutions, provided the solution exist.

UNIT-IV

4. (A) Prove that the positive primitive solution of $x^{2}+y^{2}=z^{2}$ with y even are given by $x=r^{2}-s^{2}$, $y=2 r s, z=r^{2}+s^{2}$
where r, s are arbitrary positive integers of opposite parity and $r>s$ and $(r, s)=1$.
(B) Find all the primitive Pythagorean triples $\mathrm{x}, \mathrm{y}, \mathrm{z}$ such that $\mathrm{z}-\mathrm{y}=1$.

OR
(C) Construct Farey Sequence F_{6}, given that $F_{1}=\left\{\frac{0}{1}, \frac{1}{1}\right\}$.
(D) If $\frac{a}{b}$ and $\frac{a^{\prime}}{b^{\prime}}$ are two consecutive terms in F_{n} with $\frac{a}{b}$ to the left of $\frac{a^{\prime}}{b^{\prime}}$, then prove $\mathrm{a}^{\prime} \mathrm{b}-\mathrm{ab} \mathrm{b}^{\prime}=1$.

QUESTION-V

5. (A) Define an equivalence relation. Give an example of equivalence relation.
$\begin{array}{ll}\text { (B) Define simple graph and multi-graph. } & 11 / 2\end{array}$
(C) Prove that $4 x\left(n^{2}+2\right)$ for any integer n. $11 / 2$
(D) Define Reduced Residue System. Find reduced residue system for $m=12.11 / 2$
(E) Prove that $\left(\frac{a^{2}}{p}\right)=1$.
(F) Define greatest integer function [x]. Find [-3.5] and [12]. 11⁄2
(G) Test the solvability of $4 \mathrm{x}+8 \mathrm{y}=2$. $11 / 2$
(H) Prove that terms in a Farey sequence are in monotonically increasing order. $11 / 2$

Bachelor of Science (B.Sc.) Semester-VI (C.B.S.) Examination

M_{12}-DIFFERENTIAL GEOMETRY

Paper-2

(Mathematics)
Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Prove that Darboux vector $\overline{\mathrm{d}}$ is constant if K and τ are constant and the d has a fixed direction in $\frac{K}{\tau}$ is constant.
(B) Prove that the Frenet-Serret formulae :
(i) $\frac{\mathrm{dt}}{\mathrm{ds}}=\mathrm{k} \overline{\mathrm{n}}$
(ii) $\frac{\mathrm{d} \overline{\mathrm{n}}}{\mathrm{ds}}=\tau \overline{\mathrm{b}}-\mathrm{K} \overline{\mathrm{t}}$
(iii) $\frac{\mathrm{d} \overline{\mathrm{b}}}{\mathrm{ds}}=-\tau \overline{\mathrm{n}}$
where K and τ are curvature and torsion of the space curve.

OR

(C) Show that the tangent to the locus of the centres of the osculating sphere passes through the centre of the osculating circle.
(D) Prove that the necessary and sufficient condition that a curve to be a helix is that ratio of curvature to torsion is constant at all points.

6

UNIT-II

2. (A) Find the involutes and evolutes of the circular helix :
$\overline{\mathrm{r}}=(\mathrm{a} \cos \theta, \mathrm{a} \sin \theta, \mathrm{b} \theta)$.
(B) Show that the curvature K_{1} and torsion τ_{1} of an involute c of c are given by
$\mathrm{K}_{1}^{2}=\frac{\tau^{2}+\mathrm{K}^{2}}{\mathrm{~K}^{2}(\mathrm{c}-\mathrm{s})^{2}}, \quad \tau_{1}=\frac{\mathrm{K} \tau^{\prime}-\mathrm{K}^{\prime} \tau}{\mathrm{K}(\mathrm{c}-\mathrm{s})\left(\mathrm{K}^{2}+\tau^{2}\right)}$
where K and τ are the curvature and the torsion of the curve.

OR

(C) Find the principal curvatures at the origin of the paraboloid
$2 \zeta=5 x^{2}+4 x y+2 y^{2}$.
Also find the curvature of the section $\mathrm{y}=\mathrm{x}$.
(D) If $\dot{\alpha} \dot{\beta}-\dot{\beta} \dot{\alpha} \neq 0$, show that the line $x=a \zeta+\alpha, y=b \zeta+\beta$ generates a skew ruled surface and find its equation where a, b and α, β are functions of u .

UNIT-III

3. (A) Determine the unit normals and the fundamental forms of the surface $\bar{r}=(a \cos u, a \sin u, b v)$.
(B) On the paraboloid $x^{2}-y^{2}=\zeta$, find the orthogonal trajectories of the section by the planes $\mathrm{z}=$ constant.

OR

(C) Obtain Gauss's formulae for $\overline{\mathrm{r}}_{11}, \overline{\mathrm{r}}_{12}, \overline{\mathrm{r}}_{22}$, where $\overline{\mathrm{r}}$ is the position vector of any point of a surface and suffixes 1 and 2 denotes differentiation with regard to u and v respectively.
(D) Prove that the Rodrigue's formula $K d \overline{\mathrm{r}}+\mathrm{d} \overline{\mathrm{N}}=0$
where K is the principle curvature.

UNIT-IV

4. (A) Define geodesic and further obtain the differential equation of the geodesic.
(B) Prove that the curves of the family $\frac{v^{3}}{u^{2}}=$ constant are geodesics on a surface with the metric.

$$
v^{2} \mathrm{du}^{2}-2 u v \operatorname{dud} v+2 \mathrm{u}^{2} \mathrm{~d} v^{2}, u>0, v>0 .
$$

OR

(C) Find the Gaussian curvature at a point (u, v) of the anchor ring, $r=((b+a \cos u) \cos v,(b+a \cos u) \sin v, a \sin u), 0<u, v<2 \pi$.
(D) Prove Bonnet's theorem for a curve on a surface that $\mathrm{w}^{\prime}+\tau=\tau_{\mathrm{g}}$, where w is the normal angle and τ_{g} is the torsion of the geodesic tangent.

QUESTION-V

5. (A) Define Osculating Plane.
(B) Define Fundamental plane at a point P whose position vector is $\overline{\mathrm{r}}$ on the space curve $\overline{\mathrm{R}}$.
(C) Define Involute and Evolute.
(D) Define Developable Surface.
(E) Define a third fundamental form.
$\begin{array}{ll}\text { (F) State Euler's theorem on normal curvature. } & 11 / 2\end{array}$
$\begin{array}{ll}\text { (G) State Gauss-Bonnet theorem. } & 11 / 2\end{array}$
(H) Define geodesic polar coordinates for the geodesic metric $\mathrm{ds}^{2}=\mathrm{du}^{2}+\mathrm{G}(\mathrm{u}, v) \mathrm{d} v^{2} . \quad 11 / 2$

NKT/KS/17/5201

Bachelor of Science (B.Sc.) Semester-VI (C.B.S.) Examination

M_{12}-SPECIAL THEORY OF RELATIVITY
 Paper-2
 (Mathematics)

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) What is an inertial frame ? Show that in an inertial frame, a body not under influence of any forces, moves in a straight line with constant velocity.
(B) Prove that $\nabla^{2}-\frac{1}{\mathrm{C}^{2}} \frac{\partial^{2}}{\partial \mathrm{t}^{2}}$ is invariant under special Lorentz transformations.

OR

(C) Explain Lorentz-Fitzgerald contraction idea. How was this idea used to account for negative result of the Michelson-Morley experiment?
(D) Assume that the Lorentz transformations are the linear transformations of the form $\mathrm{x}=\mathrm{Ax}+\mathrm{Bt}$ and $t^{\prime}=D x+E t, E>0$. Considering $x^{2}-c^{2} t^{2}=x^{\prime 2}-c^{2} t^{\prime 2}$ and the motion of the origin of S, deduce the Lorentz transformations.

UNIT-II

2. (A) Obtain the transformation equations for the components of particle acceleration by using special Lorentz transformations.
(B) Explain the phenomenon of time dilation in special theory of relativity.

OR

(C) Obtain the transformation of Lorentz contraction factor $\left(1-\frac{u^{2}}{c^{2}}\right)^{\frac{1}{2}}$ in the two inertial frames of references.
(D) Prove that simultaneity is relative but not an absolute in special relativity.

UNIT-III

3. (A) Define symmetric and skew symmetric covariant tensors of order two. Show that any tensor of the second order may be expressed as the sum of a symmetric tensor and skew symmetric tensor.
(B) Define Kronckar Delta ∂_{s}^{r}. Show that ∂_{s}^{r} is a mixed tensor of order two.

OR

(C) Define space-like interval. Prove that there exists an inertial system S^{\prime} in which the two events occur at one and the same time if the interval between two events is space-like.
(D) Define four tensor. Obtain the transformations of the components of a symmetrical four tensor T^{11} under the Lorentz transformations.

UNIT-IV

4. (A) If m is the relativistic mass of a particle moving with velocity u relative to an inertial frame s , then prove that :

$$
\mathrm{m}=\frac{\mathrm{m}_{0}}{\left(1-\frac{\mathrm{u}^{2}}{\mathrm{c}^{2}}\right)^{\frac{1}{2}}}
$$

where m_{b} is the rest mass of the particle.
(B) Define four-velocity. Show that the four velocity, in component form, can be expressed as :

$$
\begin{align*}
& \mathrm{u}^{i}=\left(\frac{\bar{u}}{\mathrm{c} \sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}, \frac{1}{\sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}\right) \\
& \text { where } \overline{\mathrm{u}}=\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right) \tag{6}
\end{align*}
$$

OR

2
(C) Derive the wave equation for the propagation of the electric field strength $\overline{\mathrm{E}}$ and the magnetic field strength $\overline{\mathrm{H}}$ in free space with velocity of light.
(D) Obtain the transformation equations of the electromagnetic four-potential vector.

QUESTION-V

5. (A) Discuss the outcome of Michelson-Morley experiment regarding fringe shift and stationary ether.
(B) Show that the circle $x^{\prime 2}+y^{\prime 2}=a^{2}$ in the frame of reference s^{\prime} is measured to be an ellipse in s if s^{\prime} moves with uniform velocity relative to s .
(C) Derive Einstein's velocity addition law.
(D) An electron is moving with a speed of 0.85 c in a direction opposite to that of a moving photon. Calculate relative velocity.
(E) Define :

Free suffix and dummy suffix in a tensor quantity.
(F) Show that two events which are separated by a time-like interval cannot occur simultaneously in any inertial system.
(G) Show that the four velocity of a particle is a unit time-like vector.
(H) Prove that the energy momentum tensor T^{j} is symmetric.

